Radboud University Nijmege

Implementing Prgst on ARM11

Thom Wiggers

thom@thomwiggers.nl
https://thomwiggers.nl/proest/

Institute for Computing and Information Sciences
Radboud University Nijmegen

10th April 2015

Thom Wiggers 10th April 2015 Prgst on ARM11 1/28

mailto:thom@thomwiggers.nl
https://thomwiggers.nl/proest/

Radboud University Nijmegen

Outline

Introduction
Why optimise Prgst

Prgst

Optimising on ARM

Optimising Prgst

Thom Wiggers 10th April 2015 Prgst on ARM11 2 /28

Introduction
Radboud University Nijmegen %

%
OmiNe s

Outline

Introduction
Why optimise Prgst

Thom Wiggers 10th April 2015 Prgst on ARM11 3/28

Introduction

Radboud University Nijmegen

What is..?

Authenticated Encryption

Authenticated Encryption is encryption in which you have both:
e confidentiality (nobody else can read this)

e authenticity (nobody else could have produced this message)

Thom Wiggers 10th April 2015 Prgst on ARM11 4 /28

Introduction

Radboud University Nijmegen

What is..?

Authenticated Encryption

Authenticated Encryption is encryption in which you have both:
e confidentiality (nobody else can read this)

e authenticity (nobody else could have produced this message)

ARM11

ARMI11 is a CPU architecture used mostly in mobile and embedded
devices.

e Smartphones
e Raspberry Pi
¢ Nintendo 3DS

Thom Wiggers 10th April 2015 Prgst on ARM11 4 /28

Introduction

Radboud University Nijmegen

Why optimise Prgst

o CAESAR! is an ongoing competition for Authenticated
Encryption ciphers.

e “Winners" will be selected based not only on security, but also
on performance in both hardware and software.

e More implementations means judges can better compare
ciphers.

e Examples of other competitions:
e 2000, NIST announce Rijndael selected as the Advanced
Encryption Standard (AES).
e 2012, NIST announce Keccak as winner of the NIST hash
function competition (SHA3).

1 CAESAR: Competition for Authenticated Encryption: Security,

Applicability, and Robustness.
Thom Wiggers 10th April 2015 Prgst on ARM11 5/28

Radboud University Nijmege

Outline

Prgst

Thom Wiggers 10th April 2015 Prgst on ARM11 6 /28

Radboud University Nijmegen

Prgst permutation

PR®ST combines the PR@ST permutation in various ways to arrive
at different modes: COPA, OTR and APE.

The round function R; where i indicates the round number, is
defined as:

Ri(x) = (AddConstants;oShiftPlanes;oMixSlices o SubRows)(x).

Thom Wiggers 10th April 2015 Prgst on ARM11 7 /28

Radboud University Nijmege

Prgst state

PRr@ST-128 has a 256 bit state s which is considered as a
4 x 4 x 16 three-dimensional block

S0,0 S0,1 S0,2 50,3
51,0 S1,1 S1,2 S1,3
20 52,1 S22 523
S30 53,1 S32 S33

where each s, , is a 16-bit lane.

Row Column Lane Slice Plane Sheet Axes
Nomenclature for state parts®

2 Kavun et al. Prg st v1.1. 2014,
Thom Wiggers 10th April 2015 Prgst on ARM11 8 /28

Radboud University Nijmegen

SubRows

3 = c® (a&b),
d & (b&c),

b =
' =ad (d&b),
/

d' = be (H&c).
z
ﬁy

For each row (a, b, ¢, d) of the state substitute (a’, b', ¢, d") where

xr
Axes

S|IC€ PIane Sheet
Prgst on ARM11 9 /28

Column Lane

10th April 2015

Thom Wiggers

Radboud University Nijmegen

MixSlices

Mix up the slices according to this big thing:

56,0 = S0,0D 51,0D 51,3D 52,2 53,0 D S3,2D 3,3
56,1 = S0,1DS1,0D 523D S3,0D 53,3
56,2 = 50,.2® 511D 20D S21 D S30
56,3 = 503D S12D 521D 22D S31
S{,o = 50,0D 503D S1,0D 52,0D 522D 52,3 D s3,2
5{,1 = 50,0D5,1D 90D 523D S33
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S2®53D52,1DSs31Ds3,2
Sé,o = S02®DSs1,0D 512D 51,3D 2,0 D S3,0D 3,3
5§,1 = S0,3DSs1,0D51,3D 521D S30
Sﬁ,2 = 50,0 D 50,1 D S1,0D S22 D 53,1
5§,3 = 50,1 D S02D 51,1 D 523D S32
Sé,o = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
5§,2 = S0,0D s1,0D 51,1 D 52,1 D S32
S53 = S01DPS1,1D512D 522D 33

Thom Wiggers th April 2015 Prgst on ARM11 10 / 28

Radboud University Nijmege

ShiftPlanes;

e Shifts the bits in the planes over the z-direction,
e The number of bits rotated differs for odd and even rounds:

Even The first, second, third and forth plane are
rotated 0, 1, 8 and 9 bits, respectively,

Odd The first, second, third and forth plane are
rotated 0, 2, 4 and 6 bits, respectively.

Wﬂ'f;

Column Lane Slice Plane Sheet Axes

Thom Wiggers 10th April 2015 Prgst on ARM11 11 /28

Radboud University Nijmege

AddConstants;

Adds the constants ¢; and ¢, rotated by the round number i and
the index of the lane, to the individual lanes.

50,0 0.0 @ (€ << i << 0)
S0,1 501 (0 « i< 1)
50,2 502 @ (a K i < 2)
so3 | = | 503P (2 <<i<k3)
S0 s10®P (c1 K i< 4)
33 533 @ (cZ K i< 15)

Thom Wiggers 10th April 2015 Prgst on ARM11 12 /28

Optimising on ARM Radboud University Nijmegen ¢

Outline

Optimising on ARM

Thom Wiggers 10th April 2015 Prgst on ARM11 13 /28

Optimising on ARM Radboud University Nijmegen %

e
OMiNe

e 32-bit architecture

e 14 registers + stack pointer 4+ program counter

Thom Wiggers 10th April 2015 Prgst on ARM11 14 / 28

Optimising on ARM Radboud University Nijmege

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.
x1 = meml16[address_a] x1 = meml16[address_a]
x = x1 + 10 x2 = meml16[address_b]
x2 = meml6[address_b] x3 = meml6[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml6[address_c] y = x2 + 10
z = x3 + 10 z = x3 + 10

Thom Wiggers 10th April 2015 Prgst on ARM11 15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

Thom Wiggers

differently.

Cycle: 1
x1 = meml6[address_a] x1 = meml6[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

10th April 2015

Prgst on ARM11

15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

Thom Wiggers

differently.

Cycle: 2
x1 = memi16[address_a] x1 = memi16[address_a]
x = x1 + 10 # waiting... x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

10th April 2015

Prgst on ARM11

15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

Thom Wiggers

differently.

Cycle: 3
x1 = memi16[address_a] x1 = memi16[address_a]
x = x1 + 10 # waiting... x2 = mem16[address_b]
x2 = meml16[address_b] x3 = meml6[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

10th April 2015

Prgst on ARM11

15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

Thom Wiggers

differently.

Cycle: 4
x1 = memi16[address_a] x1 = memi16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1 + 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

10th April 2015

Prgst on ARM11

15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 5
x1 = memi16[address_a] x1 = memi16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml6[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

Thom Wiggers 10th April 2015 Prgst on ARM11 15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 6
x1 = memi16[address_a] x1 = memi16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 # waiting... x =x1+ 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

Thom Wiggers 10th April 2015 Prgst on ARM11 15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 7
x1 = memi16[address_a] x1 = meml16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 # waiting... x =x1+ 10
x3 = meml6[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prgst on ARM11 15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 8
x1 = memi16[address_a] x1 = meml16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml6[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prgst on ARM11 15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 9
x1 = memi16[address_a] x1 = meml16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml6[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prgst on ARM11 15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 10
x1 = memi16[address_a] x1 = meml16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml6[address_c] y = x2 + 10
z = x3 + 10 # waiting... z =x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prgst on ARM11 15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 11
x1 = memi16[address_a] x1 = meml16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml6[address_c] y = x2 + 10
z = x3 + 10 # waiting... z =x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prgst on ARM11 15 / 28

Optimising on ARM Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 12
x1 = memi16[address_a] x1 = meml16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml6[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prgst on ARM11 15 / 28

Optimising on ARM

Radboud University Nijmegen 3

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

x1 = meml6[address_al]

x =x1 + 10
x2 = meml16[address_b]
y = x2 + 10
x3 = meml16[address_c]
z = x3 + 10

done after 12 cycles

Thom Wiggers 10th April 2015

= meml6[address_al]

= meml16[address_b]

mem16 [address_c]

x1 + 10

= x2 + 10

x3 + 10

done after 6 cycles!

KoM
w N -
nnn

H N < X
|

Prgst on ARM11

15 / 28

Optimising on ARM Radboud University Nijmegen

Free shifts and rotations

ARM support rotating and shifting one of the inputs to most
arithmetic operations.

a< b (c>>n)

Thom Wiggers 10th April 2015 Prgst on ARM11 16 / 28

Radboud University Nijmegen

Optimising Prgst

Outline

Optimising Prgst

Thom Wiggers 10th April 2015 Prgst on ARM11 17 / 28

Radboud University Nijmegen

Optimising Prgst

SubRows

3 = c® (a&b),
d & (b&c),

b =
' =ad (d&b),
/

d' = be (H&c).
z
ﬁy

For each row (a, b, ¢, d) of the state substitute (a’, b', ¢, d") where

Column Lane Sllce PIane Sheet Axes
10th April 2015 Prgst on ARM11 18 / 28

Thom Wiggers

sing Radboud University Nijmegen
Optimising Prgst

SubRows

Lanes are 16 bits, but our registers are 32 bits. ..
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
#a =c” (a &b

newa = a_and_b & (a_and_b >>> 16)
newa "= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prgst on ARM11 19 /28

sing Radboud University Nijmegen
Optimising Prgst

SubRows

Lanes are 16 bits, but our registers are 32 bits. ..
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
#a =c” (a &b

newa = a_and_b & (a_and_b >>> 16)
newa "= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prgst on ARM11 19 /28

sing Radboud University Nijmegen
Optimising Prgst

SubRows

Lanes are 16 bits, but our registers are 32 bits. ..
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
#a =c” (a &b

newa = a_and_b & (a_and_b >>> 16)
newa "= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prgst on ARM11 19 /28

sing Radboud University Nijmegen
Optimising Prgst

SubRows

Lanes are 16 bits, but our registers are 32 bits. ..
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
#a =c” (a &b

newa = a_and_b & (a_and_b >>> 16)
newa "= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prgst on ARM11 19 /28

sing Radboud University Nijmegen
Optimising Prgst

SubRows

Lanes are 16 bits, but our registers are 32 bits. ..
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
#a =c” (a &b

newa = a_and_b & (a_and_b >>> 16)
newa "= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prgst on ARM11 19 /28

sing Radboud University Nijmegen
Optimising Prgst

MixSlices

Mix up the slices according to this big thing:

56,0 = S0,0D 51,0D 51,3D 52,2 53,0 D S3,2D 3,3
56,1 = S0,1DS1,0D 523D S3,0D 53,3
56,2 = 50,.2® 511D 20D S21 D S30
56,3 = 503D S12D 521D 22D S31
S{,o = 50,0D 503D S1,0D 52,0D 522D 52,3 D s3,2
5{,1 = 50,0D5,1D 90D 523D S33
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S2®53D52,1DSs31Ds3,2
Sé,o = S02®DSs1,0D 512D 51,3D 2,0 D S3,0D 3,3
5§,1 = S0,3DSs1,0D51,3D 521D S30
Sﬁ,2 = 50,0 D 50,1 D S1,0D S22 D 53,1
5§,3 = 50,1 D S02D 51,1 D 523D S32
Sé,o = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
5§,2 = S0,0D s1,0D 51,1 D 52,1 D S32
S53 = S01DPS1,1D512D 522D 33

Thom Wiggers th April 2015 Prgst on ARM11 20 / 28

sing Radboud University Nijmegen
Optimising Prgst

MixSlices

Mix up the slices according to this big thing:

56,0 = 5,0Ds510D513D 2D 30D S32DS33
56,1 = S0,1D 510D 52,3 D S3,0D S3,3
56,2 = 50,.2® 511D 20D S21 D S30
56,3 = 503D S12D 521D 22D S31
S{,o = 50,0D 503D S1,0D 52,0D 522D 52,3 D s3,2
5{,1 = 50,0D5,1D 90D 523D S33
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S2®53D52,1DSs31Ds3,2
S0 = S02®Ss1,0D51,2D 13D 020D S0P 533
5§,1 = S0,3DSs1,0D51,3D 521D S30
Sﬁ,2 = 50,0 D 50,1 D S1,0D S22 D 53,1
5§,3 = 50,1 D S02D 51,1 D 523D S32
Sé,o = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
5§,2 = S0,0D s1,0D 51,1 D 52,1 D S32
5§,3 = S0,1D51,1D8512D 2D S33

Thom Wiggers th April 2015 Prgst on ARM11 20 / 28

sing Radboud University Nijmegen
Optimising Prgst

MixSlices

Mix up the slices according to this big thing:

56,0 = 5,0DPs510D513D 2D 530D S32DS33
56,1 = S0,1D 510D S2,3D S3,0D S3,3
56,2 = 502D 511D 520D 21D S30
56,3 = 53Ps12D21Ds22PDs31
5{,0 = 50,00 S0,3D 51,0D S2,0D S2,2D 523D 53,2
S11 = S0,0Ps1,1D 50D 23D s
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S02®Ds1,3D 521D S3,1D S32
Sé,o = S02®DSs1,0D 512D 51,3D 2,0 D S3,0D 3,3
5§,1 = 53DPs10D513Ds21Ds30
Sﬁ,2 = 50,0D 0,1 D S1,0D S22 S31
Sh3 = S01®5.2DSs11P 23D ss2
5§,0 = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
S50 = S0,0®S1,0Ds11DP 21D S32
5§,3 = 5,1Ps511Ps512DS22Ds33

Thom Wiggers th April 2015 Prgst on ARM11 20 / 28

sing Radboud University Nijmegen
Optimising Prgst

MixSlices

Mix up the slices according to this big thing:

56,0 = 5,0D510D513D 2D S30DS32DS33
56,1 = S0,1DS1,0D 523D S3,0D 53,3
56,2 = 50,.2® 511D 20D S21 D S30
56,3 = 503D S12D 521D 22D S31
S{,o = S0,0D S0,3D 510D 520D 22D 523D 532
5{,1 = 50,0D5,1D 90D 523D S33
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S2®53D52,1DSs31Ds3,2
Sé,o = S02®DSs1,0D 512D 51,3D 2,0 D S3,0D 3,3
5§,1 = S0,3DSs1,0D51,3D 521D S30
Sﬁ,2 = 50,0 D 50,1 D S1,0D S22 D 53,1
5§,3 = 50,1 D S02D 51,1 D 523D S32
Sé,o = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
5§,2 = S0,0D s1,0D 51,1 D 52,1 D S32
5§,3 = S0,1D51,1D8512D 2D S33

Thom Wiggers th April 2015 Prgst on ARM11 20 / 28

sing Radboud University Nijmegen
Optimising Prgst

MixSlices

Mix up the slices according to this big thing:

56,0 = 5,0DPs510D513D 2D S30DS32DS33
56,1 = S0,1DS1,0D 523D S3,0D 53,3
56,2 = 502D 511D 520D 21D S30
56,3 = 53Ps12D21Ds22PDs31
5{,0 = 50,00 50,3D S1,0D $2,0D 522D 52,3D 53,2
S11 = S0,0Ps1,1D 50D 23D s
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S02®Ds1,3D 521D S3,1D S32
Sé,o = S02®DSs1,0D 512D 51,3D 2,0 D S3,0D 3,3
5§,1 = 53DPs10D513Ds21Ds30
Sﬁ,2 = 50,0D 0,1 D S1,0D S22 S31
Sh3 = S01®5.2DSs11P 23D ss2
5§,0 = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
5§,2 = S0,0DSs1,0D 511D 521D S32
5§,3 = 5,1Ps511Ps512DS22Ds33

Thom Wiggers th April 2015 Prgst on ARM11 20 / 28

sing Radboud University Nijmegen ¢
Optimising Prgst

Finding the shortest MixSlices

e We want to find a program that can do MixSlices in as few
lines of the shape u = v @ w as possible. (this is known as the
shortest linear Straight-Line Program);

e Finding this SLP is NP-hard

e Tried to find the shortest program, but that wasn't feasible
even on the biggest machine on campus.

Thom Wiggers 10th April 2015 Prgst on ARM11 21 /28

Radboud University Nijmegen ¢

Optimising Prgst mines’

Heuristic results

A new MixSlices in 48 instead of 72 XORs!

t1 = x D xu te = x1 @ xi3 tr = b D t»
t3 =t D Xxua tr = Xxwo D tie = X6 D X
s = x © X yio = t D tn Y6 = tie © tr
yia = 3 D s ty = X D xua tg = x2 D tu
tp = Xxwo D i3 s = X9 @D ¢t Yo = te © i
b = x2 & Xxs tg = Xx1 D xi3 t3p = xg D tg

th = tb D x yi = tg & 3 tz = X © x3

Y2 = ta D b tsy = tio D 3 yz = tzr & t3
ty = X6 D U yn = ts @O tu tzi. = x13 D tir
twn = x1 D xu ts = X @ t3 3 = tie D ta
tw = xs & to tis, = x5 & X5 ts2, = x1 @D tie
tn = x2 D X5 Y5 = tis @ yis = tis ©
n = to @D tn tir = x3 D X t3z = x5 D tus
b1 = x3 & ti2 e = Xx12 D Y8 = tis D 133
tiz = xs © xu tis = xa D xr tza = xu D tua
ya = tiz @D ta Yo = tis D te yio = tz D ta;

Thom Wiggers 10th April 2015 Prgst on ARM11 22 /28

Radboud University Nijmegen ¢

Optimising Prgst mines’

Heuristic results

A new MixSlices in 48 instead of 72 XORs!

t1 = x D xu te = x1 @ xi3 tr = b D t»
t3 =t D Xxua tr = Xxwo D tie = X6 D X
s = x © X yio = t D tn Y6 = tie © tr
yia = 3 D s ty = X D xua tg = x2 D tu
tp = Xxwo D i3 s = X9 @D ¢t Yo = te © i
b = x2 & Xxs tg = Xx1 D xi3 t3p = xg D tg

th = tb D x yi = tg & 3 tz = X © x3

Y2 = ta D b tsy = tio D 3 yz = tzr & t3
tu = X6 D 1y yn = ts @O tu tzi. = x13 D tir
twn = x1 D xu ts = X @ t3 3 = tie D ta
tw = xs & to tis, = x5 & X5 ts2, = x1 @D tie
tn = x2 D X5 Y5 = tis @ yis = tis ©
n = to @D tn tir = x3 D X t3z = x5 D tus
b1 = x3 & ti2 e = Xx12 D Y8 = tis D 133
tiz = xs © xu tis = xa D xr tss. = xu B tu
ya = tiz @D ta Yo = tis D te yio = tz D ta;

Thom Wiggers 10th April 2015 Prgst on ARM11 22 /28

Radboud University Nijmegen 3

Optimising Prgst

ShiftPlanes;

e Shifts the bits in the planes over the z-direction,
e The number of bits rotated differs for odd and even rounds:

Even The first, second, third and forth plane are
rotated 0, 1, 8 and 9 bits, respectively,

Odd The first, second, third and forth plane are
rotated 0, 2, 4 and 6 bits, respectively.

Wﬂ"f;

Column Lane Slice Plane Sheet Axes

Thom Wiggers 10th April 2015 Prgst on ARM11 23 /28

Radboud University Nijmegen

Optimising Prgst

ShiftPlanes

To rotate a 16 bit lane inside a 32-bit register, we need to first
double the register:

a = meml6[addr]
a=a | (a<< 16)
a >>>= 2

Unfortunately, that means we can’t use our inline rotations any
more.

Thom Wiggers 10th April 2015 Prgst on ARM11 24 /28

Radboud University Nijmegen 3

Optimising Prgst

AddConstants;

Adds the constants ¢; and ¢, rotated by the round number i and
the index of the lane, to the individual lanes.

50,0 0.0 @ (€ << i << 0)
S0,1 501 (0 « i< 1)
50,2 S02 @ (a1 < i << 2)
so3 | = | 503P (2 <<i<k3)
S0 51,0 ® (c1 K i< 4)
33 533 @ (cZ K i< 15)

Thom Wiggers 10th April 2015 Prgst on ARM11 25 /28

Radboud University Nijmegen

Optimising Prgst

AddConstants

Here, we can make good use of the free rotations:

x_0 = meml6[address]
newx0 = x_0 =~ (c1 >>> 31)

By reusing results still in memory from ShiftPlanes we don’t need
to shift registers loaded using the “two lanes in one
register” -approach.

Thom Wiggers 10th April 2015 Prgst on ARM11 26 / 28

Optimising Prgst

Benchmarks

Radboud University Nijmege

Putting it all together, we get the following results from the
SUPERCOP benchmarking suite for cryptography:

Implementation

APE COPA OTR

Reference (C)
Mine (ARM asm)

2,975,123 2,402,577 1,569,582
1,900,274 1,714,321 848,100

Performance improvement

36% 28% 46%

Table: Comparison of cycle counts

Thom Wiggers 10th April 2015

Prgst on ARM11 27 / 28

Radboud University Nijmegen

Optimising Prgst

Conclusions

e Good performance improvement,

e New implementation of MixSlices.

Possible further work

e Optimise PR@ST-256,
e Optimise PR@ST for other platforms,
e Optimise other ciphers using these techniques,

e Backport these techniques to a faster c-implementation.

Thom Wiggers 10th April 2015 Prgst on ARM11 28 /28

Overtime

Radboud University Nijmegen

Outline

Overtime
Approximating the shortest MixSlices
Searching the shortest MixSlices

Thom Wiggers 10th April 2015 Prgst on ARM11 29 /28

Overtime

Radboud University Nijmegen

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

@ Consider your program as an input matrix M;

@® Initialise matrix S to ([1,0,---],[0,1,0---]) to represent your
Inputs;

©® Define a Distance function Dist[i] that determines the distance

of S to M[i] as minimum number of combinations of S that
need to be made to get M[i;

® Generate all combinations of rows in S, determine the best new
one by the norm of the distances until distances are 0.

Thom Wiggers 10th April 2015 Prgst on ARM11 30/ 28

Overtime

Radboud University Nijmegen

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

@ Consider your program as an input matrix M;

Thom Wiggers 10th April 2015 Prgst on ARM11 30/ 28

Overtime

Radboud University Nijmege

Your program as a matrix

We can represent these programs as a matrix:

Yo=X ©Dx1 dxx ©x3 BXxa 11111
yi=x0 &x1 Sxx bOx3 11110
Y2=x ©Sx1 Sx Pxa M=1]11 1 01
y3 = Xp Bx3 Bxy 00111
Ya = Xo DXy 1 0 0 01

Thom Wiggers 10th April 2015 Prgst on ARM11 31/28

Overtime

Radboud University Nijmegen

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

@ Consider your program as an input matrix M;

@® Initialise matrix S to ([1,0,---],[0,1,0---]) to represent your
inputs;

Thom Wiggers 10th April 2015 Prgst on ARM11 32/28

Overtime

Radboud University Nijmegen

Matrix S of program lines

Each line of S is a combination of the previous lines and represents
one line of our straight-line program.

10 0 0O
01 0 0O
00 1 0O
S=|100 0 10
00 0 01
01 0 10

Thom Wiggers 10th April 2015 Prgst on ARM11 33 /28

Overtime

Radboud University Nijmegen

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

@ Consider your program as an input matrix M;

@® Initialise matrix S to ([1,0,---],[0,1,0---]) to represent your
Inputs;

©® Define a Distance function Dist[i] that determines the distance

of S to M[i] as minimum number of combinations of S that
need to be made to get M[i;

Thom Wiggers 10th April 2015 Prgst on ARM11 34 /28

Overtime

Radboud University Nijmegen

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

@ Consider your program as an input matrix M;

@® Initialise matrix S to ([1,0,---],[0,1,0---]) to represent your
Inputs;

©® Define a Distance function Dist[i] that determines the distance

of S to M[i] as minimum number of combinations of S that
need to be made to get M[i;

® Generate all combinations of rows in S, determine the best new
one by the norm of the distances until distances are 0.

Thom Wiggers 10th April 2015 Prgst on ARM11 34 /28

Overtime

Radboud University Nijmegen 3

Finding the shortest MixSlices

e We want to find a program that can do MixSlices in as few
lines of the shape u = v @ w as possible. (this is known as the
shortest linear Straight-Line Program);

e Finding this SLP is NP-hard

e Tried to find the shortest program, but that wasn't feasible
even on the biggest machine on campus.

Thom Wiggers 10th April 2015 Prgst on ARM11 35 /28

Overtime

Radboud University Nijmegen

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT" how to transform
the SLP problem to SAT.

Transforming SLP to SAT

@ Input your program as a matrix and decide on a number of
lines k;

Thom Wiggers 10th April 2015 Prgst on ARM11 36 /28

Overtime

Radboud University Nijmege

Your program as a matrix

We can represent these programs as a matrix:

Yo=X ©Dx1 dxx ©x3 BXxa 11111
yi=x0 &x1 Sxx bOx3 11110
Y2=x ©Sx1 Sx Pxa M=1]11 1 01
y3 = Xp Bx3 Bxy 00111
Ya = Xo DXy 1 0 0 01

Thom Wiggers 10th April 2015 Prgst on ARM11 37 /28

Overtime

Radboud University Nijmege

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT" how to transform
the SLP problem to SAT.

Transforming SLP to SAT

@ Input your program as a matrix and decide on a number of
lines k;

® Define matrices B, C and mapping f;

Thom Wiggers 10th April 2015 Prgst on ARM11 38 /28

Overtime

Defining B, C and f for k =6

,
00000 000000 -
0000 O 000000 1—=7

,

g_l00000| _fooooo0o|, _J2m

00000 000000 337

00000 000000 437
00000 000000

\5»—>?

Thom Wiggers 10th April 2015 Prgst on ARM11

Radboud University Nijmegen

39 / 28

Overtime

Radboud University Nijmegen

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT" how to transform
the SLP problem to SAT.

Transforming SLP to SAT

@ Input your program as a matrix and decide on a number of
lines k;

® Define matrices B, C and mapping f;
© Apply constraints that only can be satisfied by valid programs;

Thom Wiggers 10th April 2015 Prgst on ARM11 40 / 28

Overtime

Radboud University Nijmegen

Defining constraints

One of the constraints:

Each line can exist of two incoming variables and it can only

use temporary variables that we have already seen

/Bl = \/ exaCtIYQ(bi,la Tty bi,n7 Ciny ' s Ci,i—l)
0<i<k

Thom Wiggers 10th April 2015 Prgst on ARM11 41 /28

Overtime

Radboud University Nijmege

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT" how to transform
the SLP problem to SAT.

Transforming SLP to SAT

@ Input your program as a matrix and decide on a number of
lines k;

® Define matrices B, C and mapping f;
© Apply constraints that only can be satisfied by valid programs;

O |If the problem is satisfiable, extract the program from B, C,
and f.

® Repeat with lower k until UNSAT.

Thom Wiggers 10th April 2015 Prgst on ARM11 42 /28

Overtime

Radboud University Nijmegen

Getting our program from the valuation

1000 1 000000 (0 3
00100 o 10000| |7t
B=loo0010l |oo0o100o0| T)272
00001 000100 3—5
00000 010010 (40

Thom Wiggers 10th April 2015 Prgst on ARM11 43 /28

&

e >
OmiNe

References Radboud University Nijmege

Bibliography |

[1] Joan Boyar, Philip Matthews and René Peralta. ‘Logic Minimization Techniques
with Applications to Cryptology'. English. In: Journal of Cryptology 26.2 (2013),
pp. 280-312. 1ssN: 0933-2790. poI1: 10.1007/s00145-012-9124~-7. URL:
http://dx.doi.org/10.1007/s00145-012-9124-7.

[2] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. URL: http://competitions.cr.yp.to/caesar.html.

[3] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger,
Peter Schwabe and Tolga Yal¢in. Prg st v1.1. 21st June 2014. URL:
http://competitions.cr.yp.to/roundl/proestvil.pdf.

Thom Wiggers 10th April 2015 Prgst on ARM11 44 / 28

http://dx.doi.org/10.1007/s00145-012-9124-7
http://dx.doi.org/10.1007/s00145-012-9124-7
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round1/proestv11.pdf

	Introduction
	Why optimise Prøst

	Prøst
	Optimising on ARM
	Optimising Prøst
	Appendix
	Overtime
	Approximating the shortest MixSlices
	Searching the shortest MixSlices

