Radboud University Nijmege

Implementing Prgst on ARM11

Thom Wiggers

thom@thomwiggers.nl
https://thomwiggers.nl/proest/

Institute for Computing and Information Sciences
Radboud University Nijmegen

10th April 2015

Thom Wiggers 10th April 2015 Prgst on ARM11 1/28


mailto:thom@thomwiggers.nl
https://thomwiggers.nl/proest/

Radboud University Nijmegen

Outline

Introduction
Why optimise Prgst

Prgst

Optimising on ARM

Optimising Prgst

Thom Wiggers 10th April 2015 Prgst on ARM11 2 /28



Introduction
Radboud University Nijmegen %

%
OmiNe s

Outline

Introduction
Why optimise Prgst

Thom Wiggers 10th April 2015 Prgst on ARM11 3/28



Introduction

Radboud University Nijmegen

What is..?

Authenticated Encryption

Authenticated Encryption is encryption in which you have both:
e confidentiality (nobody else can read this)

e authenticity (nobody else could have produced this message)
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Radboud University Nijmegen

What is..?

Authenticated Encryption

Authenticated Encryption is encryption in which you have both:
e confidentiality (nobody else can read this)

e authenticity (nobody else could have produced this message)

ARM11

ARMI11 is a CPU architecture used mostly in mobile and embedded
devices.

e Smartphones
e Raspberry Pi
¢ Nintendo 3DS

Thom Wiggers 10th April 2015 Prgst on ARM11 4 /28



Introduction

Radboud University Nijmegen

Why optimise Prgst

o CAESAR! is an ongoing competition for Authenticated
Encryption ciphers.

e “Winners" will be selected based not only on security, but also
on performance in both hardware and software.

e More implementations means judges can better compare
ciphers.

e Examples of other competitions:
e 2000, NIST announce Rijndael selected as the Advanced
Encryption Standard (AES).
e 2012, NIST announce Keccak as winner of the NIST hash
function competition (SHA3).

1 CAESAR: Competition for Authenticated Encryption: Security,

Applicability, and Robustness.
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Prgst permutation

PR®ST combines the PR@ST permutation in various ways to arrive
at different modes: COPA, OTR and APE.

The round function R; where i indicates the round number, is
defined as:

Ri(x) = (AddConstants;oShiftPlanes;oMixSlices o SubRows)(x).
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Prgst state

PRr@ST-128 has a 256 bit state s which is considered as a
4 x 4 x 16 three-dimensional block

S0,0 S0,1 S0,2 50,3
51,0 S1,1 S1,2 S1,3
20 52,1 S22 523
S30 53,1 S32 S33

where each s, , is a 16-bit lane.

Row Column Lane Slice Plane Sheet Axes
Nomenclature for state parts®

2 Kavun et al. Prg st v1.1. 2014,
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SubRows

3 = c® (a&b),
d & (b&c),

b =
' =ad (d&b),
/

d' = be (H&c).
z
ﬁy

For each row (a, b, ¢, d) of the state substitute (a’, b', ¢, d") where

xr
Axes

S|IC€ PIane Sheet
Prgst on ARM11 9 /28
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MixSlices

Mix up the slices according to this big thing:

56,0 = S0,0D 51,0D 51,3D 52,2 53,0 D S3,2D 3,3
56,1 = S0,1DS1,0D 523D S3,0D 53,3
56,2 = 50,.2® 511D 20D S21 D S30
56,3 = 503D S12D 521D 22D S31
S{,o = 50,0D 503D S1,0D 52,0D 522D 52,3 D s3,2
5{,1 = 50,0D5,1D 90D 523D S33
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S2®53D52,1DSs31Ds3,2
Sé,o = S02®DSs1,0D 512D 51,3D 2,0 D S3,0D 3,3
5§,1 = S0,3DSs1,0D51,3D 521D S30
Sﬁ,2 = 50,0 D 50,1 D S1,0D S22 D 53,1
5§,3 = 50,1 D S02D 51,1 D 523D S32
Sé,o = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
5§,2 = S0,0D s1,0D 51,1 D 52,1 D S32
S53 = S01DPS1,1D512D 522D 33
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ShiftPlanes;

e Shifts the bits in the planes over the z-direction,
e The number of bits rotated differs for odd and even rounds:

Even The first, second, third and forth plane are
rotated 0, 1, 8 and 9 bits, respectively,

Odd The first, second, third and forth plane are
rotated 0, 2, 4 and 6 bits, respectively.

Wﬂ'f;

Column Lane Slice Plane Sheet Axes
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AddConstants;

Adds the constants ¢; and ¢, rotated by the round number i and
the index of the lane, to the individual lanes.

50,0 0.0 @ (€ << i << 0)
S0,1 501 (0 « i< 1)
50,2 502 @ (a K i < 2)
so3 | = | 503P (2 <<i<k3)
S0 s10®P (c1 K i< 4)
33 533 @ (cZ K i< 15)
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e
OMiNe

e 32-bit architecture

e 14 registers + stack pointer 4+ program counter
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Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.
x1 = meml16[address_a] x1 = meml16[address_a]
x = x1 + 10 x2 = meml16[address_b]
x2 = meml6[address_b] x3 = meml6[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml6[address_c] y = x2 + 10
z = x3 + 10 z = x3 + 10

Thom Wiggers 10th April 2015 Prgst on ARM11 15 / 28
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Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
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differently.

Cycle: 1
x1 = meml6[address_a] x1 = meml6[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
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x3 = meml16[address_c] y = x2 + 10
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Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
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differently.

Cycle: 2
x1 = memi16[address_a] x1 = memi16[address_a]
x = x1 + 10 # waiting... x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10
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Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
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differently.

Cycle: 3
x1 = memi16[address_a] x1 = memi16[address_a]
x = x1 + 10 # waiting... x2 = mem16[address_b]
x2 = meml16[address_b] x3 = meml6[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10
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Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
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differently.

Cycle: 4
x1 = memi16[address_a] x1 = memi16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1 + 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10
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Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 5
x1 = memi16[address_a] x1 = memi16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml6[address_b] x3 = meml16[address_c]
y = x2 + 10 x =x1+ 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10
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Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 6
x1 = memi16[address_a] x1 = memi16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 # waiting... x =x1+ 10
x3 = meml16[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10
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Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 7
x1 = memi16[address_a] x1 = meml16[address_a]
x =x1 + 10 x2 = meml16[address_b]
x2 = meml16[address_b] x3 = meml16[address_c]
y = x2 + 10 # waiting... x =x1+ 10
x3 = meml6[address_c] y = x2 + 10
z =x3 + 10 z =x3 + 10

# done after 6 cycles!
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Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

Cycle: 10
x1 = memi16[address_a] x1 = meml16[address_a]
x =x1 + 10 x2 = meml16[address_b]
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y = x2 + 10 x =x1+ 10
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# done after 6 cycles!
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Shuffling instructions in the pipeline
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Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly

differently.

x1 = meml6[address_al]

x =x1 + 10
x2 = meml16[address_b]
y = x2 + 10
x3 = meml16[address_c]
z = x3 + 10

# done after 12 cycles

Thom Wiggers 10th April 2015

= meml6[address_al]

= meml16[address_b]

mem16 [address_c]

x1 + 10

= x2 + 10

x3 + 10

done after 6 cycles!
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Free shifts and rotations

ARM support rotating and shifting one of the inputs to most
arithmetic operations.

a< b (c>>n)
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Optimising Prgst

SubRows

3 = c® (a&b),
d & (b&c),

b =
' =ad (d&b),
/

d' = be (H&c).
z
ﬁy

For each row (a, b, ¢, d) of the state substitute (a’, b', ¢, d") where

Column Lane Sllce PIane Sheet Axes
10th April 2015 Prgst on ARM11 18 / 28
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Optimising Prgst

SubRows

Lanes are 16 bits, but our registers are 32 bits. ..
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

# b is in the upper part of a_and_b
c_and_d = mem32[address_of_s + 4]
#a =c” (a &b

newa = a_and_b & (a_and_b >>> 16)
newa "= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prgst on ARM11 19 /28
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MixSlices

Mix up the slices according to this big thing:

56,0 = S0,0D 51,0D 51,3D 52,2 53,0 D S3,2D 3,3
56,1 = S0,1DS1,0D 523D S3,0D 53,3
56,2 = 50,.2® 511D 20D S21 D S30
56,3 = 503D S12D 521D 22D S31
S{,o = 50,0D 503D S1,0D 52,0D 522D 52,3 D s3,2
5{,1 = 50,0D5,1D 90D 523D S33
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S2®53D52,1DSs31Ds3,2
Sé,o = S02®DSs1,0D 512D 51,3D 2,0 D S3,0D 3,3
5§,1 = S0,3DSs1,0D51,3D 521D S30
Sﬁ,2 = 50,0 D 50,1 D S1,0D S22 D 53,1
5§,3 = 50,1 D S02D 51,1 D 523D S32
Sé,o = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
5§,2 = S0,0D s1,0D 51,1 D 52,1 D S32
S53 = S01DPS1,1D512D 522D 33
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MixSlices

Mix up the slices according to this big thing:

56,0 = 5,0Ds510D513D 2D 30D S32DS33
56,1 = S0,1D 510D 52,3 D S3,0D S3,3
56,2 = 50,.2® 511D 20D S21 D S30
56,3 = 503D S12D 521D 22D S31
S{,o = 50,0D 503D S1,0D 52,0D 522D 52,3 D s3,2
5{,1 = 50,0D5,1D 90D 523D S33
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S2®53D52,1DSs31Ds3,2
S0 = S02®Ss1,0D51,2D 13D 020D S0P 533
5§,1 = S0,3DSs1,0D51,3D 521D S30
Sﬁ,2 = 50,0 D 50,1 D S1,0D S22 D 53,1
5§,3 = 50,1 D S02D 51,1 D 523D S32
Sé,o = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
5§,2 = S0,0D s1,0D 51,1 D 52,1 D S32
5§,3 = S0,1D51,1D8512D 2D S33
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MixSlices

Mix up the slices according to this big thing:

56,0 = 5,0DPs510D513D 2D 530D S32DS33
56,1 = S0,1D 510D S2,3D S3,0D S3,3
56,2 = 502D 511D 520D 21D S30
56,3 = 53Ps12D21Ds22PDs31
5{,0 = 50,00 S0,3D 51,0D S2,0D S2,2D 523D 53,2
S11 = S0,0Ps1,1D 50D 23D s
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S02®Ds1,3D 521D S3,1D S32
Sé,o = S02®DSs1,0D 512D 51,3D 2,0 D S3,0D 3,3
5§,1 = 53DPs10D513Ds21Ds30
Sﬁ,2 = 50,0D 0,1 D S1,0D S22 S31
Sh3 = S01®5.2DSs11P 23D ss2
5§,0 = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
S50 = S0,0®S1,0Ds11DP 21D S32
5§,3 = 5,1Ps511Ps512DS22Ds33
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MixSlices
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56,2 = 50,.2® 511D 20D S21 D S30
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S{,o = S0,0D S0,3D 510D 520D 22D 523D 532
5{,1 = 50,0D5,1D 90D 523D S33
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MixSlices

Mix up the slices according to this big thing:

56,0 = 5,0DPs510D513D 2D S30DS32DS33
56,1 = S0,1DS1,0D 523D S3,0D 53,3
56,2 = 502D 511D 520D 21D S30
56,3 = 53Ps12D21Ds22PDs31
5{,0 = 50,00 50,3D S1,0D $2,0D 522D 52,3D 53,2
S11 = S0,0Ps1,1D 50D 23D s
5{,2 = 50,1 D S1,2D 52,0 D 53,0 D S3,1
5{,3 = S02®Ds1,3D 521D S3,1D S32
Sé,o = S02®DSs1,0D 512D 51,3D 2,0 D S3,0D 3,3
5§,1 = 53DPs10D513Ds21Ds30
Sﬁ,2 = 50,0D 0,1 D S1,0D S22 S31
Sh3 = S01®5.2DSs11P 23D ss2
5§,0 = 50,0D50,2D 503D S12D 520D 523D S30
5§,1 = S0,0D S0,3D 51,3D S2,0 D S3,1
5§,2 = S0,0DSs1,0D 511D 521D S32
5§,3 = 5,1Ps511Ps512DS22Ds33
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Finding the shortest MixSlices

e We want to find a program that can do MixSlices in as few
lines of the shape u = v @ w as possible. (this is known as the
shortest linear Straight-Line Program);

e Finding this SLP is NP-hard

e Tried to find the shortest program, but that wasn't feasible
even on the biggest machine on campus.
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Optimising Prgst mines’

Heuristic results

A new MixSlices in 48 instead of 72 XORs!

t1 = x D xu te = x1 @ xi3 tr = b D t»
t3 =t D Xxua tr = Xxwo D tie = X6 D X
s = x © X yio = t D tn Y6 = tie © tr
yia = 3 D s ty = X D xua tg = x2 D tu
tp = Xxwo D i3 s = X9 @D ¢t Yo = te © i
b = x2 & Xxs tg = Xx1 D xi3 t3p = xg D tg

th = tb D x yi = tg & 3 tz = X © x3

Y2 = ta D b tsy = tio D 3 yz = tzr & t3
ty = X6 D U yn = ts @O tu tzi. = x13 D tir
twn = x1 D xu ts = X @ t3 3 = tie D ta
tw = xs & to tis, = x5 & X5 ts2, = x1 @D tie
tn = x2 D X5 Y5 = tis @ yis = tis ©
n = to @D tn tir = x3 D X t3z = x5 D tus
b1 = x3 & ti2 e = Xx12 D Y8 = tis D 133
tiz = xs © xu tis = xa D xr tza = xu D tua
ya = tiz @D ta Yo = tis D te yio = tz D ta;
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Heuristic results

A new MixSlices in 48 instead of 72 XORs!

t1 = x D xu te = x1 @ xi3 tr = b D t»
t3 =t D Xxua tr = Xxwo D tie = X6 D X
s = x © X yio = t D tn Y6 = tie © tr
yia = 3 D s ty = X D xua tg = x2 D tu
tp = Xxwo D i3 s = X9 @D ¢t Yo = te © i
b = x2 & Xxs tg = Xx1 D xi3 t3p = xg D tg

th = tb D x yi = tg & 3 tz = X © x3

Y2 = ta D b tsy = tio D 3 yz = tzr & t3
tu = X6 D 1y yn = ts @O tu tzi. = x13 D tir
twn = x1 D xu ts = X @ t3 3 = tie D ta
tw = xs & to tis, = x5 & X5 ts2, = x1 @D tie
tn = x2 D X5 Y5 = tis @ yis = tis ©
n = to @D tn tir = x3 D X t3z = x5 D tus
b1 = x3 & ti2 e = Xx12 D Y8 = tis D 133
tiz = xs © xu tis = xa D xr tss. = xu B tu
ya = tiz @D ta Yo = tis D te yio = tz D ta;
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Optimising Prgst

ShiftPlanes;

e Shifts the bits in the planes over the z-direction,
e The number of bits rotated differs for odd and even rounds:

Even The first, second, third and forth plane are
rotated 0, 1, 8 and 9 bits, respectively,

Odd The first, second, third and forth plane are
rotated 0, 2, 4 and 6 bits, respectively.

Wﬂ"f;

Column Lane Slice Plane Sheet Axes
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Optimising Prgst

ShiftPlanes

To rotate a 16 bit lane inside a 32-bit register, we need to first
double the register:

a = meml6[addr]
a=a | (a<< 16)
a >>>= 2

Unfortunately, that means we can’t use our inline rotations any
more.
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Optimising Prgst

AddConstants;

Adds the constants ¢; and ¢, rotated by the round number i and
the index of the lane, to the individual lanes.

50,0 0.0 @ (€ << i << 0)
S0,1 501 (0 « i< 1)
50,2 S02 @ (a1 < i << 2)
so3 | = | 503P (2 <<i<k3)
S0 51,0 ® (c1 K i< 4)
33 533 @ (cZ K i< 15)
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Optimising Prgst

AddConstants

Here, we can make good use of the free rotations:

x_0 = meml6[address]
newx0 = x_0 =~ (c1 >>> 31)

By reusing results still in memory from ShiftPlanes we don’t need
to shift registers loaded using the “two lanes in one
register” -approach.
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Benchmarks

Radboud University Nijmege

Putting it all together, we get the following results from the
SUPERCOP benchmarking suite for cryptography:

Implementation

APE COPA OTR

Reference (C)
Mine (ARM asm)

2,975,123 2,402,577 1,569,582
1,900,274 1,714,321 848,100

Performance improvement

36% 28% 46%

Table: Comparison of cycle counts
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Optimising Prgst

Conclusions

e Good performance improvement,

e New implementation of MixSlices.

Possible further work

e Optimise PR@ST-256,
e Optimise PR@ST for other platforms,
e Optimise other ciphers using these techniques,

e Backport these techniques to a faster c-implementation.
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Outline

Overtime
Approximating the shortest MixSlices
Searching the shortest MixSlices
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Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

@ Consider your program as an input matrix M;

@® Initialise matrix S to ([1,0,---],[0,1,0---]) to represent your
Inputs;

©® Define a Distance function Dist[i] that determines the distance

of S to M[i] as minimum number of combinations of S that
need to be made to get M[i;

® Generate all combinations of rows in S, determine the best new
one by the norm of the distances until distances are 0.
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Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

@ Consider your program as an input matrix M;
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Your program as a matrix

We can represent these programs as a matrix:

Yo=X ©Dx1 dxx ©x3 BXxa 11111
yi=x0 &x1 Sxx bOx3 11110
Y2=x ©Sx1 Sx Pxa M=1]11 1 01
y3 = Xp Bx3 Bxy 00111
Ya = Xo DXy 1 0 0 01
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Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

@ Consider your program as an input matrix M;

@® Initialise matrix S to ([1,0,---],[0,1,0---]) to represent your
inputs;
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Matrix S of program lines

Each line of S is a combination of the previous lines and represents
one line of our straight-line program.

10 0 0O
01 0 0O
00 1 0O
S=|100 0 10
00 0 01
01 0 10
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Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

@ Consider your program as an input matrix M;

@® Initialise matrix S to ([1,0,---],[0,1,0---]) to represent your
Inputs;

©® Define a Distance function Dist[i] that determines the distance

of S to M[i] as minimum number of combinations of S that
need to be made to get M[i;
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Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

@ Consider your program as an input matrix M;

@® Initialise matrix S to ([1,0,---],[0,1,0---]) to represent your
Inputs;

©® Define a Distance function Dist[i] that determines the distance

of S to M[i] as minimum number of combinations of S that
need to be made to get M[i;

® Generate all combinations of rows in S, determine the best new
one by the norm of the distances until distances are 0.
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Finding the shortest MixSlices

e We want to find a program that can do MixSlices in as few
lines of the shape u = v @ w as possible. (this is known as the
shortest linear Straight-Line Program);

e Finding this SLP is NP-hard

e Tried to find the shortest program, but that wasn't feasible
even on the biggest machine on campus.
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Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT" how to transform
the SLP problem to SAT.

Transforming SLP to SAT

@ Input your program as a matrix and decide on a number of
lines k;
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Your program as a matrix

We can represent these programs as a matrix:

Yo=X ©Dx1 dxx ©x3 BXxa 11111
yi=x0 &x1 Sxx bOx3 11110
Y2=x ©Sx1 Sx Pxa M=1]11 1 01
y3 = Xp Bx3 Bxy 00111
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Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT" how to transform
the SLP problem to SAT.

Transforming SLP to SAT

@ Input your program as a matrix and decide on a number of
lines k;

® Define matrices B, C and mapping f;
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Defining B, C and f for k =6

,
00000 000000 -
0000 O 000000 1—=7

,

g_l00000| _fooooo0o|, _J2m

00000 000000 337

00000 000000 437
00000 000000

\5»—>?
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Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT" how to transform
the SLP problem to SAT.

Transforming SLP to SAT

@ Input your program as a matrix and decide on a number of
lines k;

® Define matrices B, C and mapping f;
© Apply constraints that only can be satisfied by valid programs;
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Defining constraints

One of the constraints:

Each line can exist of two incoming variables and it can only

use temporary variables that we have already seen

/Bl = \/ exaCtIYQ(bi,la Tty bi,n7 Ciny ' s Ci,i—l)
0<i<k
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Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT" how to transform
the SLP problem to SAT.

Transforming SLP to SAT

@ Input your program as a matrix and decide on a number of
lines k;

® Define matrices B, C and mapping f;
© Apply constraints that only can be satisfied by valid programs;

O |If the problem is satisfiable, extract the program from B, C,
and f.

® Repeat with lower k until UNSAT.
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Getting our program from the valuation

1000 1 000000 (0 3
00100 o 10000| |7t
B=loo0010l  |oo0o100o0| T)272
00001 000100 3—5
00000 010010 (40
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