
Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Implementing Prøst on ARM11

Thom Wiggers

thom@thomwiggers.nl

https://thomwiggers.nl/proest/

Institute for Computing and Information Sciences
Radboud University Nijmegen

10th April 2015

Thom Wiggers 10th April 2015 Prøst on ARM11 1 / 28

mailto:thom@thomwiggers.nl
https://thomwiggers.nl/proest/

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Outline

Introduction
Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

Thom Wiggers 10th April 2015 Prøst on ARM11 2 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Outline

Introduction
Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

Thom Wiggers 10th April 2015 Prøst on ARM11 3 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

What is..?

Authenticated Encryption

Authenticated Encryption is encryption in which you have both:

• confidentiality (nobody else can read this)

• authenticity (nobody else could have produced this message)

ARM11

Arm11 is a CPU architecture used mostly in mobile and embedded
devices.

• Smartphones

• Raspberry Pi

• Nintendo 3DS

Thom Wiggers 10th April 2015 Prøst on ARM11 4 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

What is..?

Authenticated Encryption

Authenticated Encryption is encryption in which you have both:

• confidentiality (nobody else can read this)

• authenticity (nobody else could have produced this message)

ARM11

Arm11 is a CPU architecture used mostly in mobile and embedded
devices.

• Smartphones

• Raspberry Pi

• Nintendo 3DS

Thom Wiggers 10th April 2015 Prøst on ARM11 4 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Why optimise Prøst

• Caesar1 is an ongoing competition for Authenticated
Encryption ciphers.

• “Winners” will be selected based not only on security, but also
on performance in both hardware and software.

• More implementations means judges can better compare
ciphers.

• Examples of other competitions:
• 2000, NIST announce Rijndael selected as the Advanced

Encryption Standard (AES).
• 2012, NIST announce Keccak as winner of the NIST hash

function competition (SHA3).

1 CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness.

Thom Wiggers 10th April 2015 Prøst on ARM11 5 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Outline

Introduction
Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

Thom Wiggers 10th April 2015 Prøst on ARM11 6 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Prøst permutation

Prøst combines the Prøst permutation in various ways to arrive
at different modes: copa, otr and ape.

The round function Ri where i indicates the round number, is
defined as:

Ri (x) = (AddConstantsi◦ShiftPlanesi◦MixSlices ◦ SubRows)(x).

Thom Wiggers 10th April 2015 Prøst on ARM11 7 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Prøst state

Prøst-128 has a 256 bit state s which is considered as a
4× 4× 16 three-dimensional block

s =


s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3


where each sx ,y is a 16-bit lane.

Row Column Lane Slice Plane Sheet

y

x

z

Axes
Nomenclature for state parts2

2 Kavun et al. Prø st v1.1. 2014.
Thom Wiggers 10th April 2015 Prøst on ARM11 8 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

SubRows

For each row (a, b, c , d) of the state substitute (a′, b′, c ′, d ′) where

a′ = c ⊕ (a&b),

b′ = d ⊕ (b&c),

c ′ = a⊕ (a′&b′),

d ′ = b ⊕ (b′&c ′).

Row Column Lane Slice Plane Sheet

y

x

z

Axes

Thom Wiggers 10th April 2015 Prøst on ARM11 9 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

MixSlices

Mix up the slices according to this big thing:

s ′0,0 = s0,0 ⊕ s1,0 ⊕ s1,3 ⊕ s2,2 ⊕ s3,0 ⊕ s3,2 ⊕ s3,3

s ′0,1 = s0,1 ⊕ s1,0 ⊕ s2,3 ⊕ s3,0 ⊕ s3,3

s ′0,2 = s0,2 ⊕ s1,1 ⊕ s2,0 ⊕ s2,1 ⊕ s3,0

s ′0,3 = s0,3 ⊕ s1,2 ⊕ s2,1 ⊕ s2,2 ⊕ s3,1

s ′1,0 = s0,0 ⊕ s0,3 ⊕ s1,0 ⊕ s2,0 ⊕ s2,2 ⊕ s2,3 ⊕ s3,2

s ′1,1 = s0,0 ⊕ s1,1 ⊕ s2,0 ⊕ s2,3 ⊕ s3,3

s ′1,2 = s0,1 ⊕ s1,2 ⊕ s2,0 ⊕ s3,0 ⊕ s3,1

s ′1,3 = s0,2 ⊕ s1,3 ⊕ s2,1 ⊕ s3,1 ⊕ s3,2

s ′2,0 = s0,2 ⊕ s1,0 ⊕ s1,2 ⊕ s1,3 ⊕ s2,0 ⊕ s3,0 ⊕ s3,3

s ′2,1 = s0,3 ⊕ s1,0 ⊕ s1,3 ⊕ s2,1 ⊕ s3,0

s ′2,2 = s0,0 ⊕ s0,1 ⊕ s1,0 ⊕ s2,2 ⊕ s3,1

s ′2,3 = s0,1 ⊕ s0,2 ⊕ s1,1 ⊕ s2,3 ⊕ s3,2

s ′3,0 = s0,0 ⊕ s0,2 ⊕ s0,3 ⊕ s1,2 ⊕ s2,0 ⊕ s2,3 ⊕ s3,0

s ′3,1 = s0,0 ⊕ s0,3 ⊕ s1,3 ⊕ s2,0 ⊕ s3,1

s ′3,2 = s0,0 ⊕ s1,0 ⊕ s1,1 ⊕ s2,1 ⊕ s3,2

s ′3,3 = s0,1 ⊕ s1,1 ⊕ s1,2 ⊕ s2,2 ⊕ s3,3

Thom Wiggers 10th April 2015 Prøst on ARM11 10 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

ShiftPlanesi

• Shifts the bits in the planes over the z-direction,

• The number of bits rotated differs for odd and even rounds:

Even The first, second, third and forth plane are
rotated 0, 1, 8 and 9 bits, respectively,

Odd The first, second, third and forth plane are
rotated 0, 2, 4 and 6 bits, respectively.

Row Column Lane Slice Plane Sheet

y

x

z

Axes

Thom Wiggers 10th April 2015 Prøst on ARM11 11 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

AddConstantsi

Adds the constants c1 and c2, rotated by the round number i and
the index of the lane, to the individual lanes.

s ′0,0
s ′0,1
s ′0,2
s ′0,3
s ′1,0

...
s ′3,3


=



s0,0 ⊕ (c1 ≪ i ≪ 0)
s0,1 ⊕ (c2 ≪ i ≪ 1)
s0,2 ⊕ (c1 ≪ i ≪ 2)
s0,3 ⊕ (c2 ≪ i ≪ 3)
s1,0 ⊕ (c1 ≪ i ≪ 4)

...
s3,3 ⊕ (c2 ≪ i ≪ 15)



Thom Wiggers 10th April 2015 Prøst on ARM11 12 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Outline

Introduction
Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

Thom Wiggers 10th April 2015 Prøst on ARM11 13 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

ARM11

• 32-bit architecture

• 14 registers + stack pointer + program counter

Thom Wiggers 10th April 2015 Prøst on ARM11 14 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 1

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 2

x1 = mem16[address_a]

x = x1 + 10 # waiting...

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 3

x1 = mem16[address_a]

x = x1 + 10 # waiting...

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 4

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 5

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 6

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10 # waiting...

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 7

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10 # waiting...

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 8

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 9

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 10

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10 # waiting...

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 11

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10 # waiting...

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.
Cycle: 12

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Shuffling instructions in the pipeline

The same program can be much faster if it is ordered slightly
differently.

x1 = mem16[address_a]

x = x1 + 10

x2 = mem16[address_b]

y = x2 + 10

x3 = mem16[address_c]

z = x3 + 10

done after 12 cycles

x1 = mem16[address_a]

x2 = mem16[address_b]

x3 = mem16[address_c]

x = x1 + 10

y = x2 + 10

z = x3 + 10

done after 6 cycles!

Thom Wiggers 10th April 2015 Prøst on ARM11 15 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Free shifts and rotations

Arm support rotating and shifting one of the inputs to most
arithmetic operations.

a← b � (c ≫ n)

Thom Wiggers 10th April 2015 Prøst on ARM11 16 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Outline

Introduction
Why optimise Prøst

Prøst

Optimising on ARM

Optimising Prøst

Thom Wiggers 10th April 2015 Prøst on ARM11 17 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

SubRows

For each row (a, b, c , d) of the state substitute (a′, b′, c ′, d ′) where

a′ = c ⊕ (a&b),

b′ = d ⊕ (b&c),

c ′ = a⊕ (a′&b′),

d ′ = b ⊕ (b′&c ′).

Row Column Lane Slice Plane Sheet

y

x

z

Axes

Thom Wiggers 10th April 2015 Prøst on ARM11 18 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

SubRows

Lanes are 16 bits, but our registers are 32 bits. . .
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

b is in the upper part of a_and_b

c_and_d = mem32[address_of_s + 4]

a’ = c ^ (a & b)

newa = a_and_b & (a_and_b >>> 16)

newa ^= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prøst on ARM11 19 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

SubRows

Lanes are 16 bits, but our registers are 32 bits. . .
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

b is in the upper part of a_and_b

c_and_d = mem32[address_of_s + 4]

a’ = c ^ (a & b)

newa = a_and_b & (a_and_b >>> 16)

newa ^= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prøst on ARM11 19 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

SubRows

Lanes are 16 bits, but our registers are 32 bits. . .
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

b is in the upper part of a_and_b

c_and_d = mem32[address_of_s + 4]

a’ = c ^ (a & b)

newa = a_and_b & (a_and_b >>> 16)

newa ^= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prøst on ARM11 19 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

SubRows

Lanes are 16 bits, but our registers are 32 bits. . .
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

b is in the upper part of a_and_b

c_and_d = mem32[address_of_s + 4]

a’ = c ^ (a & b)

newa = a_and_b & (a_and_b >>> 16)

newa ^= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prøst on ARM11 19 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

SubRows

Lanes are 16 bits, but our registers are 32 bits. . .
We can load two lanes into one register in one load instruction.

a_and_b = mem32[address_of_s]

b is in the upper part of a_and_b

c_and_d = mem32[address_of_s + 4]

a’ = c ^ (a & b)

newa = a_and_b & (a_and_b >>> 16)

newa ^= c_and_d

mem16[address_of_s] = newa

Thom Wiggers 10th April 2015 Prøst on ARM11 19 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

MixSlices

Mix up the slices according to this big thing:

s ′0,0 = s0,0 ⊕ s1,0 ⊕ s1,3 ⊕ s2,2 ⊕ s3,0 ⊕ s3,2 ⊕ s3,3

s ′0,1 = s0,1 ⊕ s1,0 ⊕ s2,3 ⊕ s3,0 ⊕ s3,3

s ′0,2 = s0,2 ⊕ s1,1 ⊕ s2,0 ⊕ s2,1 ⊕ s3,0

s ′0,3 = s0,3 ⊕ s1,2 ⊕ s2,1 ⊕ s2,2 ⊕ s3,1

s ′1,0 = s0,0 ⊕ s0,3 ⊕ s1,0 ⊕ s2,0 ⊕ s2,2 ⊕ s2,3 ⊕ s3,2

s ′1,1 = s0,0 ⊕ s1,1 ⊕ s2,0 ⊕ s2,3 ⊕ s3,3

s ′1,2 = s0,1 ⊕ s1,2 ⊕ s2,0 ⊕ s3,0 ⊕ s3,1

s ′1,3 = s0,2 ⊕ s1,3 ⊕ s2,1 ⊕ s3,1 ⊕ s3,2

s ′2,0 = s0,2 ⊕ s1,0 ⊕ s1,2 ⊕ s1,3 ⊕ s2,0 ⊕ s3,0 ⊕ s3,3

s ′2,1 = s0,3 ⊕ s1,0 ⊕ s1,3 ⊕ s2,1 ⊕ s3,0

s ′2,2 = s0,0 ⊕ s0,1 ⊕ s1,0 ⊕ s2,2 ⊕ s3,1

s ′2,3 = s0,1 ⊕ s0,2 ⊕ s1,1 ⊕ s2,3 ⊕ s3,2

s ′3,0 = s0,0 ⊕ s0,2 ⊕ s0,3 ⊕ s1,2 ⊕ s2,0 ⊕ s2,3 ⊕ s3,0

s ′3,1 = s0,0 ⊕ s0,3 ⊕ s1,3 ⊕ s2,0 ⊕ s3,1

s ′3,2 = s0,0 ⊕ s1,0 ⊕ s1,1 ⊕ s2,1 ⊕ s3,2

s ′3,3 = s0,1 ⊕ s1,1 ⊕ s1,2 ⊕ s2,2 ⊕ s3,3

Thom Wiggers 10th April 2015 Prøst on ARM11 20 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

MixSlices

Mix up the slices according to this big thing:

s ′0,0 = s0,0 ⊕ s1,0 ⊕ s1,3 ⊕ s2,2 ⊕ s3,0 ⊕ s3,2 ⊕ s3,3

s ′0,1 = s0,1 ⊕ s1,0 ⊕ s2,3 ⊕ s3,0 ⊕ s3,3

s ′0,2 = s0,2 ⊕ s1,1 ⊕ s2,0 ⊕ s2,1 ⊕ s3,0

s ′0,3 = s0,3 ⊕ s1,2 ⊕ s2,1 ⊕ s2,2 ⊕ s3,1

s ′1,0 = s0,0 ⊕ s0,3 ⊕ s1,0 ⊕ s2,0 ⊕ s2,2 ⊕ s2,3 ⊕ s3,2

s ′1,1 = s0,0 ⊕ s1,1 ⊕ s2,0 ⊕ s2,3 ⊕ s3,3

s ′1,2 = s0,1 ⊕ s1,2 ⊕ s2,0 ⊕ s3,0 ⊕ s3,1

s ′1,3 = s0,2 ⊕ s1,3 ⊕ s2,1 ⊕ s3,1 ⊕ s3,2

s ′2,0 = s0,2 ⊕ s1,0 ⊕ s1,2 ⊕ s1,3 ⊕ s2,0 ⊕ s3,0 ⊕ s3,3

s ′2,1 = s0,3 ⊕ s1,0 ⊕ s1,3 ⊕ s2,1 ⊕ s3,0

s ′2,2 = s0,0 ⊕ s0,1 ⊕ s1,0 ⊕ s2,2 ⊕ s3,1

s ′2,3 = s0,1 ⊕ s0,2 ⊕ s1,1 ⊕ s2,3 ⊕ s3,2

s ′3,0 = s0,0 ⊕ s0,2 ⊕ s0,3 ⊕ s1,2 ⊕ s2,0 ⊕ s2,3 ⊕ s3,0

s ′3,1 = s0,0 ⊕ s0,3 ⊕ s1,3 ⊕ s2,0 ⊕ s3,1

s ′3,2 = s0,0 ⊕ s1,0 ⊕ s1,1 ⊕ s2,1 ⊕ s3,2

s ′3,3 = s0,1 ⊕ s1,1 ⊕ s1,2 ⊕ s2,2 ⊕ s3,3

Thom Wiggers 10th April 2015 Prøst on ARM11 20 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

MixSlices

Mix up the slices according to this big thing:

s ′0,0 = s0,0 ⊕ s1,0 ⊕ s1,3 ⊕ s2,2 ⊕ s3,0 ⊕ s3,2 ⊕ s3,3

s ′0,1 = s0,1 ⊕ s1,0 ⊕ s2,3 ⊕ s3,0 ⊕ s3,3

s ′0,2 = s0,2 ⊕ s1,1 ⊕ s2,0 ⊕ s2,1 ⊕ s3,0

s ′0,3 = s0,3 ⊕ s1,2 ⊕ s2,1 ⊕ s2,2 ⊕ s3,1

s ′1,0 = s0,0 ⊕ s0,3 ⊕ s1,0 ⊕ s2,0 ⊕ s2,2 ⊕ s2,3 ⊕ s3,2

s ′1,1 = s0,0 ⊕ s1,1 ⊕ s2,0 ⊕ s2,3 ⊕ s3,3

s ′1,2 = s0,1 ⊕ s1,2 ⊕ s2,0 ⊕ s3,0 ⊕ s3,1

s ′1,3 = s0,2 ⊕ s1,3 ⊕ s2,1 ⊕ s3,1 ⊕ s3,2

s ′2,0 = s0,2 ⊕ s1,0 ⊕ s1,2 ⊕ s1,3 ⊕ s2,0 ⊕ s3,0 ⊕ s3,3

s ′2,1 = s0,3 ⊕ s1,0 ⊕ s1,3 ⊕ s2,1 ⊕ s3,0

s ′2,2 = s0,0 ⊕ s0,1 ⊕ s1,0 ⊕ s2,2 ⊕ s3,1

s ′2,3 = s0,1 ⊕ s0,2 ⊕ s1,1 ⊕ s2,3 ⊕ s3,2

s ′3,0 = s0,0 ⊕ s0,2 ⊕ s0,3 ⊕ s1,2 ⊕ s2,0 ⊕ s2,3 ⊕ s3,0

s ′3,1 = s0,0 ⊕ s0,3 ⊕ s1,3 ⊕ s2,0 ⊕ s3,1

s ′3,2 = s0,0 ⊕ s1,0 ⊕ s1,1 ⊕ s2,1 ⊕ s3,2

s ′3,3 = s0,1 ⊕ s1,1 ⊕ s1,2 ⊕ s2,2 ⊕ s3,3

Thom Wiggers 10th April 2015 Prøst on ARM11 20 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

MixSlices

Mix up the slices according to this big thing:

s ′0,0 = s0,0 ⊕ s1,0 ⊕ s1,3 ⊕ s2,2 ⊕ s3,0 ⊕ s3,2 ⊕ s3,3

s ′0,1 = s0,1 ⊕ s1,0 ⊕ s2,3 ⊕ s3,0 ⊕ s3,3

s ′0,2 = s0,2 ⊕ s1,1 ⊕ s2,0 ⊕ s2,1 ⊕ s3,0

s ′0,3 = s0,3 ⊕ s1,2 ⊕ s2,1 ⊕ s2,2 ⊕ s3,1

s ′1,0 = s0,0 ⊕ s0,3 ⊕ s1,0 ⊕ s2,0 ⊕ s2,2 ⊕ s2,3 ⊕ s3,2

s ′1,1 = s0,0 ⊕ s1,1 ⊕ s2,0 ⊕ s2,3 ⊕ s3,3

s ′1,2 = s0,1 ⊕ s1,2 ⊕ s2,0 ⊕ s3,0 ⊕ s3,1

s ′1,3 = s0,2 ⊕ s1,3 ⊕ s2,1 ⊕ s3,1 ⊕ s3,2

s ′2,0 = s0,2 ⊕ s1,0 ⊕ s1,2 ⊕ s1,3 ⊕ s2,0 ⊕ s3,0 ⊕ s3,3

s ′2,1 = s0,3 ⊕ s1,0 ⊕ s1,3 ⊕ s2,1 ⊕ s3,0

s ′2,2 = s0,0 ⊕ s0,1 ⊕ s1,0 ⊕ s2,2 ⊕ s3,1

s ′2,3 = s0,1 ⊕ s0,2 ⊕ s1,1 ⊕ s2,3 ⊕ s3,2

s ′3,0 = s0,0 ⊕ s0,2 ⊕ s0,3 ⊕ s1,2 ⊕ s2,0 ⊕ s2,3 ⊕ s3,0

s ′3,1 = s0,0 ⊕ s0,3 ⊕ s1,3 ⊕ s2,0 ⊕ s3,1

s ′3,2 = s0,0 ⊕ s1,0 ⊕ s1,1 ⊕ s2,1 ⊕ s3,2

s ′3,3 = s0,1 ⊕ s1,1 ⊕ s1,2 ⊕ s2,2 ⊕ s3,3

Thom Wiggers 10th April 2015 Prøst on ARM11 20 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

MixSlices

Mix up the slices according to this big thing:

s ′0,0 = s0,0 ⊕ s1,0 ⊕ s1,3 ⊕ s2,2 ⊕ s3,0 ⊕ s3,2 ⊕ s3,3

s ′0,1 = s0,1 ⊕ s1,0 ⊕ s2,3 ⊕ s3,0 ⊕ s3,3

s ′0,2 = s0,2 ⊕ s1,1 ⊕ s2,0 ⊕ s2,1 ⊕ s3,0

s ′0,3 = s0,3 ⊕ s1,2 ⊕ s2,1 ⊕ s2,2 ⊕ s3,1

s ′1,0 = s0,0 ⊕ s0,3 ⊕ s1,0 ⊕ s2,0 ⊕ s2,2 ⊕ s2,3 ⊕ s3,2

s ′1,1 = s0,0 ⊕ s1,1 ⊕ s2,0 ⊕ s2,3 ⊕ s3,3

s ′1,2 = s0,1 ⊕ s1,2 ⊕ s2,0 ⊕ s3,0 ⊕ s3,1

s ′1,3 = s0,2 ⊕ s1,3 ⊕ s2,1 ⊕ s3,1 ⊕ s3,2

s ′2,0 = s0,2 ⊕ s1,0 ⊕ s1,2 ⊕ s1,3 ⊕ s2,0 ⊕ s3,0 ⊕ s3,3

s ′2,1 = s0,3 ⊕ s1,0 ⊕ s1,3 ⊕ s2,1 ⊕ s3,0

s ′2,2 = s0,0 ⊕ s0,1 ⊕ s1,0 ⊕ s2,2 ⊕ s3,1

s ′2,3 = s0,1 ⊕ s0,2 ⊕ s1,1 ⊕ s2,3 ⊕ s3,2

s ′3,0 = s0,0 ⊕ s0,2 ⊕ s0,3 ⊕ s1,2 ⊕ s2,0 ⊕ s2,3 ⊕ s3,0

s ′3,1 = s0,0 ⊕ s0,3 ⊕ s1,3 ⊕ s2,0 ⊕ s3,1

s ′3,2 = s0,0 ⊕ s1,0 ⊕ s1,1 ⊕ s2,1 ⊕ s3,2

s ′3,3 = s0,1 ⊕ s1,1 ⊕ s1,2 ⊕ s2,2 ⊕ s3,3

Thom Wiggers 10th April 2015 Prøst on ARM11 20 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Finding the shortest MixSlices

• We want to find a program that can do MixSlices in as few
lines of the shape u = v ⊕ w as possible. (this is known as the
shortest linear Straight-Line Program);

• Finding this SLP is NP-hard

• Tried to find the shortest program, but that wasn’t feasible
even on the biggest machine on campus.

Thom Wiggers 10th April 2015 Prøst on ARM11 21 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Heuristic results

A new MixSlices in 48 instead of 72 xors!

t1 = x0 ⊕ x14

t3 = t1 ⊕ x14

t5 = x9 ⊕ x5

y14 = t3 ⊕ t5

t12 = x10 ⊕ t3

t2 = x12 ⊕ x8

t4 = t2 ⊕ x2

y2 = t4 ⊕ t5

t14 = x6 ⊕ t4

t10 = x1 ⊕ x11

t19 = x4 ⊕ t10

t11 = x12 ⊕ x15

y1 = t19 ⊕ t11

t21 = x3 ⊕ t12

t13 = x8 ⊕ x11

y4 = t13 ⊕ t21

t6 = x1 ⊕ x13

t22 = x10 ⊕ t6

y10 = t1 ⊕ t22

t9 = x2 ⊕ x14

t23 = x9 ⊕ t9

t8 = x7 ⊕ x13

y7 = t8 ⊕ t23

t24 = t10 ⊕ t23

y11 = t5 ⊕ t24

t25 = x0 ⊕ t13

t15 = x5 ⊕ x15

y5 = t15 ⊕ t25

t17 = x3 ⊕ x9

t26 = x12 ⊕ t26

t18 = x4 ⊕ x7

y9 = t18 ⊕ t26

t27 = t2 ⊕ t22

t16 = x6 ⊕ x10

y6 = t16 ⊕ t27

t28 = x7 ⊕ t11

y0 = t12 ⊕ t28

t30 = x8 ⊕ t8

t7 = x0 ⊕ x3

y13 = t7 ⊕ t30

t31 = x13 ⊕ t17

y3 = t16 ⊕ t31

t32 = x1 ⊕ t16

y15 = t15 ⊕ t32

t33 = x15 ⊕ t14

y8 = t18 ⊕ t33

t34 = x11 ⊕ t14

y12 = t7 ⊕ t34

Thom Wiggers 10th April 2015 Prøst on ARM11 22 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Heuristic results

A new MixSlices in 48 instead of 72 xors!

t1 = x0 ⊕ x14

t3 = t1 ⊕ x14

t5 = x9 ⊕ x5

y14 = t3 ⊕ t5

t12 = x10 ⊕ t3

t2 = x12 ⊕ x8

t4 = t2 ⊕ x2

y2 = t4 ⊕ t5

t14 = x6 ⊕ t4

t10 = x1 ⊕ x11

t19 = x4 ⊕ t10

t11 = x12 ⊕ x15

y1 = t19 ⊕ t11

t21 = x3 ⊕ t12

t13 = x8 ⊕ x11

y4 = t13 ⊕ t21

t6 = x1 ⊕ x13

t22 = x10 ⊕ t6

y10 = t1 ⊕ t22

t9 = x2 ⊕ x14

t23 = x9 ⊕ t9

t8 = x7 ⊕ x13

y7 = t8 ⊕ t23

t24 = t10 ⊕ t23

y11 = t5 ⊕ t24

t25 = x0 ⊕ t13

t15 = x5 ⊕ x15

y5 = t15 ⊕ t25

t17 = x3 ⊕ x9

t26 = x12 ⊕ t26

t18 = x4 ⊕ x7

y9 = t18 ⊕ t26

t27 = t2 ⊕ t22

t16 = x6 ⊕ x10

y6 = t16 ⊕ t27

t28 = x7 ⊕ t11

y0 = t12 ⊕ t28

t30 = x8 ⊕ t8

t7 = x0 ⊕ x3

y13 = t7 ⊕ t30

t31 = x13 ⊕ t17

y3 = t16 ⊕ t31

t32 = x1 ⊕ t16

y15 = t15 ⊕ t32

t33 = x15 ⊕ t14

y8 = t18 ⊕ t33

t34 = x11 ⊕ t14

y12 = t7 ⊕ t34

Thom Wiggers 10th April 2015 Prøst on ARM11 22 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

ShiftPlanesi

• Shifts the bits in the planes over the z-direction,

• The number of bits rotated differs for odd and even rounds:

Even The first, second, third and forth plane are
rotated 0, 1, 8 and 9 bits, respectively,

Odd The first, second, third and forth plane are
rotated 0, 2, 4 and 6 bits, respectively.

Row Column Lane Slice Plane Sheet

y

x

z

Axes

Thom Wiggers 10th April 2015 Prøst on ARM11 23 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

ShiftPlanes

To rotate a 16 bit lane inside a 32-bit register, we need to first
double the register:

a = mem16[addr]

a = a | (a << 16)

a >>>= 2

Unfortunately, that means we can’t use our inline rotations any
more.

Thom Wiggers 10th April 2015 Prøst on ARM11 24 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

AddConstantsi

Adds the constants c1 and c2, rotated by the round number i and
the index of the lane, to the individual lanes.

s ′0,0
s ′0,1
s ′0,2
s ′0,3
s ′1,0

...
s ′3,3


=



s0,0 ⊕ (c1 ≪ i ≪ 0)
s0,1 ⊕ (c2 ≪ i ≪ 1)
s0,2 ⊕ (c1 ≪ i ≪ 2)
s0,3 ⊕ (c2 ≪ i ≪ 3)
s1,0 ⊕ (c1 ≪ i ≪ 4)

...
s3,3 ⊕ (c2 ≪ i ≪ 15)



Thom Wiggers 10th April 2015 Prøst on ARM11 25 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

AddConstants

Here, we can make good use of the free rotations:

x_0 = mem16[address]

newx0 = x_0 ^ (c1 >>> 31)

By reusing results still in memory from ShiftPlanes we don’t need
to shift registers loaded using the “two lanes in one
register”-approach.

Thom Wiggers 10th April 2015 Prøst on ARM11 26 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Benchmarks

Putting it all together, we get the following results from the
supercop benchmarking suite for cryptography:

Implementation APE COPA OTR

Reference (C) 2, 975, 123 2, 402, 577 1, 569, 582
Mine (ARM asm) 1, 900, 274 1, 714, 321 848, 100

Performance improvement 36% 28% 46%

Table: Comparison of cycle counts

Thom Wiggers 10th April 2015 Prøst on ARM11 27 / 28

Introduction
Prøst

Optimising on ARM
Optimising Prøst

Radboud University Nijmegen

Conclusions

Results
• Good performance improvement,

• New implementation of MixSlices.

Possible further work
• Optimise Prøst-256,

• Optimise Prøst for other platforms,

• Optimise other ciphers using these techniques,

• Backport these techniques to a faster c-implementation.

Thom Wiggers 10th April 2015 Prøst on ARM11 28 / 28

Overtime
References Radboud University Nijmegen

Outline

Overtime
Approximating the shortest MixSlices
Searching the shortest MixSlices

Thom Wiggers 10th April 2015 Prøst on ARM11 29 / 28

Overtime
References Radboud University Nijmegen

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

The heuristic

1 Consider your program as an input matrix M;

2 Initialise matrix S to ([1, 0, · · ·], [0, 1, 0 · · ·]) to represent your
inputs;

3 Define a Distance function Dist[i] that determines the distance
of S to M[i] as minimum number of combinations of S that
need to be made to get M[i];

4 Generate all combinations of rows in S , determine the best new
one by the norm of the distances until distances are 0.

Thom Wiggers 10th April 2015 Prøst on ARM11 30 / 28

Overtime
References Radboud University Nijmegen

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

The heuristic

1 Consider your program as an input matrix M;

2 Initialise matrix S to ([1, 0, · · ·], [0, 1, 0 · · ·]) to represent your
inputs;

3 Define a Distance function Dist[i] that determines the distance
of S to M[i] as minimum number of combinations of S that
need to be made to get M[i];

4 Generate all combinations of rows in S , determine the best new
one by the norm of the distances until distances are 0.

Thom Wiggers 10th April 2015 Prøst on ARM11 30 / 28

Overtime
References Radboud University Nijmegen

Your program as a matrix

We can represent these programs as a matrix:

y0 = x0 ⊕x1 ⊕x2 ⊕x3 ⊕x4

y1 = x0 ⊕x1 ⊕x2 ⊕x3

y2 = x0 ⊕x1 ⊕x2 ⊕x4

y3 = x2 ⊕x3 ⊕x4

y4 = x0 ⊕x4

M =


1 1 1 1 1
1 1 1 1 0
1 1 1 0 1
0 0 1 1 1
1 0 0 0 1



Thom Wiggers 10th April 2015 Prøst on ARM11 31 / 28

Overtime
References Radboud University Nijmegen

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

The heuristic

1 Consider your program as an input matrix M;

2 Initialise matrix S to ([1, 0, · · ·], [0, 1, 0 · · ·]) to represent your
inputs;

3 Define a Distance function Dist[i] that determines the distance
of S to M[i] as minimum number of combinations of S that
need to be made to get M[i];

4 Generate all combinations of rows in S , determine the best new
one by the norm of the distances until distances are 0.

Thom Wiggers 10th April 2015 Prøst on ARM11 32 / 28

Overtime
References Radboud University Nijmegen

Matrix S of program lines

Each line of S is a combination of the previous lines and represents
one line of our straight-line program.

S =



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 1 0

· · ·



Thom Wiggers 10th April 2015 Prøst on ARM11 33 / 28

Overtime
References Radboud University Nijmegen

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

The heuristic

1 Consider your program as an input matrix M;

2 Initialise matrix S to ([1, 0, · · ·], [0, 1, 0 · · ·]) to represent your
inputs;

3 Define a Distance function Dist[i] that determines the distance
of S to M[i] as minimum number of combinations of S that
need to be made to get M[i];

4 Generate all combinations of rows in S , determine the best new
one by the norm of the distances until distances are 0.

Thom Wiggers 10th April 2015 Prøst on ARM11 34 / 28

Overtime
References Radboud University Nijmegen

Using a heuristic

Boyar et al. define a heuristic to approximate the shortest
program.[1]

The heuristic

1 Consider your program as an input matrix M;

2 Initialise matrix S to ([1, 0, · · ·], [0, 1, 0 · · ·]) to represent your
inputs;

3 Define a Distance function Dist[i] that determines the distance
of S to M[i] as minimum number of combinations of S that
need to be made to get M[i];

4 Generate all combinations of rows in S , determine the best new
one by the norm of the distances until distances are 0.

Thom Wiggers 10th April 2015 Prøst on ARM11 34 / 28

Overtime
References Radboud University Nijmegen

Finding the shortest MixSlices

• We want to find a program that can do MixSlices in as few
lines of the shape u = v ⊕ w as possible. (this is known as the
shortest linear Straight-Line Program);

• Finding this SLP is NP-hard

• Tried to find the shortest program, but that wasn’t feasible
even on the biggest machine on campus.

Thom Wiggers 10th April 2015 Prøst on ARM11 35 / 28

Overtime
References Radboud University Nijmegen

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT” how to transform
the SLP problem to SAT.

Transforming SLP to SAT

1 Input your program as a matrix and decide on a number of
lines k ;

2 Define matrices B, C and mapping f ;

3 Apply constraints that only can be satisfied by valid programs;

4 If the problem is satisfiable, extract the program from B,C ,
and f .

5 Repeat with lower k until UnSAT.

Thom Wiggers 10th April 2015 Prøst on ARM11 36 / 28

Overtime
References Radboud University Nijmegen

Your program as a matrix

We can represent these programs as a matrix:

y0 = x0 ⊕x1 ⊕x2 ⊕x3 ⊕x4

y1 = x0 ⊕x1 ⊕x2 ⊕x3

y2 = x0 ⊕x1 ⊕x2 ⊕x4

y3 = x2 ⊕x3 ⊕x4

y4 = x0 ⊕x4

M =


1 1 1 1 1
1 1 1 1 0
1 1 1 0 1
0 0 1 1 1
1 0 0 0 1



Thom Wiggers 10th April 2015 Prøst on ARM11 37 / 28

Overtime
References Radboud University Nijmegen

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT” how to transform
the SLP problem to SAT.

Transforming SLP to SAT

1 Input your program as a matrix and decide on a number of
lines k ;

2 Define matrices B, C and mapping f ;

3 Apply constraints that only can be satisfied by valid programs;

4 If the problem is satisfiable, extract the program from B,C ,
and f .

5 Repeat with lower k until UnSAT.

Thom Wiggers 10th April 2015 Prøst on ARM11 38 / 28

Overtime
References Radboud University Nijmegen

Defining B ,C and f for k = 6

B =



0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 C =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 f =



0 7→?

1 7→?

2 7→?

3 7→?

4 7→?

5 7→?

Thom Wiggers 10th April 2015 Prøst on ARM11 39 / 28

Overtime
References Radboud University Nijmegen

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT” how to transform
the SLP problem to SAT.

Transforming SLP to SAT

1 Input your program as a matrix and decide on a number of
lines k ;

2 Define matrices B, C and mapping f ;

3 Apply constraints that only can be satisfied by valid programs;

4 If the problem is satisfiable, extract the program from B,C ,
and f .

5 Repeat with lower k until UnSAT.

Thom Wiggers 10th April 2015 Prøst on ARM11 40 / 28

Overtime
References Radboud University Nijmegen

Defining constraints

One of the constraints:

Each line can exist of two incoming variables and it can only
use temporary variables that we have already seen

β1 =
∨

0≤i<k

exactly2(bi ,1, · · · , bi ,n, ci ,n, · · · , ci ,i−1)

Thom Wiggers 10th April 2015 Prøst on ARM11 41 / 28

Overtime
References Radboud University Nijmegen

Trying to find the actual shortest program

Fuhs and Schneider-Kamp show in “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) using SAT” how to transform
the SLP problem to SAT.

Transforming SLP to SAT

1 Input your program as a matrix and decide on a number of
lines k ;

2 Define matrices B, C and mapping f ;

3 Apply constraints that only can be satisfied by valid programs;

4 If the problem is satisfiable, extract the program from B,C ,
and f .

5 Repeat with lower k until UnSAT.

Thom Wiggers 10th April 2015 Prøst on ARM11 42 / 28

Overtime
References Radboud University Nijmegen

Getting our program from the valuation

B =



1 0 0 0 1
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

 C =



0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 1 0

f =



0 7→ 3

1 7→ 4

2 7→ 2

3 7→ 5

4 7→ 0

Thom Wiggers 10th April 2015 Prøst on ARM11 43 / 28

Overtime
References Radboud University Nijmegen

Bibliography I

[1] Joan Boyar, Philip Matthews and René Peralta. ‘Logic Minimization Techniques
with Applications to Cryptology’. English. In: Journal of Cryptology 26.2 (2013),
pp. 280–312. issn: 0933-2790. doi: 10.1007/s00145-012-9124-7. url:
http://dx.doi.org/10.1007/s00145-012-9124-7.

[2] CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness. url: http://competitions.cr.yp.to/caesar.html.

[3] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian Rechberger,
Peter Schwabe and Tolga Yalçın. Prø st v1.1. 21st June 2014. url:
http://competitions.cr.yp.to/round1/proestv11.pdf.

Thom Wiggers 10th April 2015 Prøst on ARM11 44 / 28

http://dx.doi.org/10.1007/s00145-012-9124-7
http://dx.doi.org/10.1007/s00145-012-9124-7
http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/round1/proestv11.pdf

	Introduction
	Why optimise Prøst

	Prøst
	Optimising on ARM
	Optimising Prøst
	Appendix
	Overtime
	Approximating the shortest MixSlices
	Searching the shortest MixSlices

