
Thom Wiggers, 2022-06-01, Radboud University - Applied Cryptography

TLS
And some stuff about making it Post-Quantum



>93 %
Of US Firefox page loads use TLS

Firefox Telemetry, 2022-05-30

https://letsencrypt.org/stats/#percent-pageloads


Agenda
What are we talking about today

• TLS

• History

• TLS 1.3


• PKI

• Making stuff PQ

• PQTLS

• KEMTLS



RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3

“TLS allows client/server applications to communicate 
over the Internet in a way that is designed to prevent 
eavesdropping, tampering, and message forgery.”









TLS



Checklist
Requirements for TLS

Establish a shared secret key for application traffic


Transmit the identity during the protocol


• so we don’t need to know it beforehand


Be Secure



Transport Layer Security
A brief history

• 1995: SSL 2.0 (“Secure Sockets Layer”) ☠ (insecure)


• 1996: SSL 3.0 update ☠ (insecure)


• Already fixes many problems in 2.0


• 1999: TLS 1.0 📛 (deprecated)


• 2006: TLS 1.1 📛 (deprecated)


• 2008: TLS 1.2 (okay with the right config)


• 2018: TLS 1.3



TLS 1.2 and earlier
A sketch



TLS 1.2 problems
AKA why you should use TLS 1.3

• Too many round-trips 

• Certificates are sent in the clear


• Everybody can see you’re connecting to wggrs.nl


• Especially problematic for client authentication


• A lot of legacy cryptography and patches against attacks

http://wggrs.nl


Attacks



Attacks on TLS
A 👉 very incomplete 👈 history

• 1998, 2006: Bleichenbacher breaks RSA encryption and RSA signatures using errors as side-channel


• 2011: BEAST: breaks SSL 3.0 and TLS 1.0 (nobody was using TLS 1.1 (2006) or 1.2 (2008)…)


•  avoid attack by using RC4 (but since 2013 RC4 is considered ☠…)


• 2012/2013: CRIME / BREACH: compression in TLS is bad


• 2013: Lucky Thirteen: timing attack on encrypt-then-MAC


• 2014: POODLE: destroys SSL 3.0


• 2014: Bleichenbacher again (BERserk): signature forgery


• 2015/2016: FREAK / Logjam


• implementation flaws downgrade to EXPORT cryptography


• 2016: DROWN: use the server’s SSLv2 support to break SSLv3/TLS 1.{0,1,2}


• 2018: ROBOT: Bleichenbacher’s 1998 attack is still valid on many TLS 1.2 implementations



Attacks on TLS
Some common themes

• Attacks on old versions of TLS remain valid for decades 

• XP, Vista, Android <5 never supported TLS 1.1, 1.2 

• Many attacks are possible because legacy algorithms are never turned off by 
servers


• FREAK/Logjam: 512-bit RSA/Diffie-Hellman (‘Export’ crypto)


• Setting up TLS servers is a massive headache


• So many ciphersuites, key exchange groups, …



This isn’t even 
 all of them!

Ciphersuites in TLS



Checklist
TLS 1.2 and earlier

Establish a shared secret key for application traffic


Transmit the identity during the protocol


• so we don’t need to know it beforehand


❗ Be secure


❗ Be robust against attacks


❗ Protect identities during the handshake



TLS 1.3
Wishlist

• Secure handshake


• More privacy


• Only forward secret key exchanges


• Get rid of MD5, SHA1, 3DES, EXPORT, NULL, …  


• Simplify parameters


• More robust cryptography


• Faster, 1-RTT protocol


• 0-RTT resumption



TLS 1.3
RFC8446

• Move key exchange into the first two 
messages


• Encrypt as much as possible


• Be done as soon as possible



TLS 1.3 full handshake
The crypto

• Key exchange via ECDH


• only ephemeral key exchange


• Server Authentication: Signature


• Handshake authentication:  
HMAC-SHA256


• “key confirmation”


• AEAD: only AES-GCM or ChaCha20-
Poly1305

TLS 1.3 overview 
K, K’, K’’, K’’’: bunch of purpose-specific keys



TLS 1.3 Resumption and 0-RTT
Got a ticket?

• If you have a pre-shared key, you 
can do a bunch of stuff faster!


• Use PSK to compute traffic 
secret


• Ephemeral key exchange 
optional 

• Use PSK to encrypt “Early Data”



0-RTT caveats
RFC 8446 page 18

   IMPORTANT NOTE: The security properties for 0-RTT data are weaker
   than those for other kinds of TLS data.  Specifically:

   1.  This data is not forward secret, as it is encrypted solely under
       keys derived using the offered PSK.

   2.  There are no guarantees of non-replay between connections.
       Protection against replay for ordinary TLS 1.3 1-RTT data is
       provided via the server's Random value, but 0-RTT data does not
       depend on the ServerHello and therefore has weaker guarantees.
       This is especially relevant if the data is authenticated either
       with TLS client authentication or inside the application
       protocol.  The same warnings apply to any use of the
       early_exporter_master_secret.

   0-RTT data cannot be duplicated within a connection (i.e., the server
   will not process the same data twice for the same connection), and an
   attacker will not be able to make 0-RTT data appear to be 1-RTT data
   (because it is protected with different keys).  Appendix E.5 contains
   a description of potential attacks, and Section 8 describes
   mechanisms which the server can use to limit the impact of replay.



0-RTT?
For the impatient

• Siri requests


• GET requests on websites*


• Other stateless stuff


But are you sure that your application is completely robust against replays?


GET /?query=INSERT into payments (to, amount)  
                          VALUES (“thom”, 1000);



TLS 1.3 standardization
A brief evaluation

• Strong collaboration with academics for protocol evaluation


• Proofs on pen/paper, and using tools like ProVerif, Tamarin


• Academic results influenced protocol design


• But TLS working group gonna TLS working group


• State machines are still only in the appendix



TLS 1.3
Wishlist

Secure handshake


More privacy


Only forward secret key exchanges


Less MD5


Simplify parameters


More robust cryptography


Faster, 1-RTT protocol


0-RTT resumption

Post-Quantum?



PKI







Oversimplified

• Certificate Authorities (CA)


• Become a trusted CA by:


• spending 💰💰 on audits


• convince vendors to install your certificate


• Vendors trust CAs to check if I own wggrs.nl


• Intermediate CA certs make key management easier 


• (offline master signing key, etc)

Public Key Infrastructure

https://bugzilla.mozilla.org/show_bug.cgi?id=647959
http://wggrs.nl


Aside: PKI open problems
What we’ve oversimplified

• Certificate issuance


• Certificate Revocation


• Certificate Revocation Lists (CRL)


• Online Certificate Status Protocol (OCSP)


• Any trusted CA can issue a certificate for anyone


• Famously abused by Iran(?) to attack Gmail in DigiNotar.nl hack


• “Certificate Transparancy” (CT)

https://en.wikipedia.org/wiki/DigiNotar




Post-Quantum TLS



Post-Quantum Crypto
Crypto means Cryptography

Peter Shor

RSA
gx

ECC

Server operator

🤡





TLS 1.3
Pre-Quantum



TLS 1.3
Post-Quantum!!!1!



Post-Quantum KEMs
Key Encapsulation Mechanisms



Post-Quantum key sizes
New tradeoffs in cryptography



PQ signatures are 
big and/or 

slow and/or 
need hw support



💡
Use key exchange for authentication



Authentication

Explicit authentication: 

Alice receives assurance that she 
really is talking to Bob


• Signed Diffie-Hellman


• SIGMA


• TLS 1.3

Implicit authentication: 

Alice is assured that only Bob would 
be able to compute the shared secret


• Signal


• Wireguard


• Noise Framework


Can always use MAC to confirm key



TLS handshake authentication
Recap

• Signatures allow us to authenticate 
immediately!              Client                                  Server

           ClientHello         -------->
                               <--------         ServerHello
                                                       <...>
                                        <CertificateRequest>
                                               <Certificate>

                     <CertificateVerify>
           <--------          <Finished>    

           <Certificate>                                 
           <CertificateVerify>  
           <Finished>          -------->                                                                         | 

           [Application Data]  <------->  [Application Data]

          <msg>: enc. w/ keys derived from ephemeral KEX (HS)
          [msg]: enc. w/ keys derived from HS (MS)



Authenticated Key Exchange via KEM
An oversimplified protocol

Note that this protocol assumes that we have already exchanged the public keys!



TLS authentication via KEM
Naively

• Signatures allow us to authenticate 
immediately!


• KEMs require interactivity


• Exercise for the reader: see how 
Diffie—Hellman's non-interactive 
key exchange property would have 
allowed us to do this more 
efficiently  
(See OPTLS by Krawczyk and Wee)

             Client                                  Server
           ClientHello         -------->
                               <--------         ServerHello
                                                       <...>
                                        <CertificateRequest>
                               <--------       <Certificate>
           <KemEncapsulation>  -------->   

           <--------          <Finished>    
           <Certificate>       -------->                           
                               <--------  <KemEncapsulation>  
           <Finished>          -------->                                                                         | 

           [Application Data]  <------->  [Application Data]

          <msg>: enc. w/ keys derived from ephemeral KEX (HS)
          [msg]: enc. w/ keys derived from HS (MS)



KEMTLS
ACM CCS 2020

KEM for  
ephemeral key exchange 

KEM for  
server-to-client 

authenticated key exchange

Combine shared secrets



KEMTLS
The clever bit

• What can a server send to a client, before the client has said what they 
wanted?


• Use implicitly authenticated key to encrypt application message (request) to 
server before receiving Server’s Finished message


• Avoid 2-RTT protocol


• Client can send HTTP request in same place as in TLS 1.3 



KEMTLS
Sizes of instantiations





KEMTLS
Client Authentication

• Unfortunately, no nice tricks exist 
for the client certificate … 


• Full extra round-trip in KEMTLS


• Also: we need an extra 
“authenticated” handshake traffic 
secret to protect the client 
certificate

             Client                                  Server  

           ClientHello         -------->
                               <--------         ServerHello
                                                       <...>
                                        <CertificateRequest>
                               <--------       <Certificate>  ^
           <KEMEncapsulation>                                 | Auth
         ^ {Certificate}       -------->                      |
    Auth |                                                    |
         |                     <--------  {KEMEncapsulation}  |
         | {Finished}          -------->                      |
         | [Application Data]  -------->                      |
         v                     <-------           {Finished}  v

           [Application Data]  <------->  [Application Data]

          <msg>: enc. w/ keys derived from ephemeral KEX (HS)
          {msg}: enc. w/ keys derived from HS+srv. KEM Auth (AHS)
          [msg]: enc. w/ keys derived from AHS+cl. KEM Auth (MS)



KEMTLS-PDK
Pre-Distributed Keys

• The client often knows the server:


• It’s the 10th time you refreshed the front page of Reddit in the past 5 
minutes


• You’ve been doom-scrolling /r/wallstreetbets 📉 for two hours already


• Or the client is a too-cheap IoT security camera spying on you for China 
checking firmware updates from the same server every day 

➡ The client reasonably might know the server’s long-term key



KEMTLS-PDK
Pre-Distributed Keys

• Use server’s long-term (certificate) 
public key to encaps before 
ClientHello 


• Send the ciphertext with ClientHello 

• Don’t transmit certificates anymore


• Save even more bytes

        Client                               Server

 ct <- KEM.Encaps(pkS)
    ClientHello
     + …
     + KemEncapsulation -------->
                        <--------         ServerHello
                                                <...>
                        <--------          <Finished>
                        <--------  [Application Data]
    <Finished>          -------->
    [Application Data]  <------->  [Application Data]

   <msg>: enc. w/ keys derived from KEX+srv. KEM auth (HS)
   [msg]: enc. w/ traffic keys derived from HS (MS)



KEMTLS-PDK
Client Authentication

• We now have an implicitly 
authenticated key already before we 
sent the ClientHello message! 

• Use this to also encrypt and send over 
the client’s certificate


• Or 0-RTT?


• ❗No replay protection


• ❗No forward secrecy

           Client                               Server

       ClientHello
        + KemEncapsulation
        {Certificate}      -------->
                           <--------         ServerHello
                                                   <...>
                                      <KEMEncapsulation>
                           <--------          <Finished>
                           <--------  [Application Data]
       <Finished>          -------->
       [Application Data]  <------->  [Application Data]

      {msg}: enc. w/ keys derived from srv. KEM auth (ES)
      <msg>: enc. w/ keys derived from KEX+srv. KEM auth (HS)
      [msg]: enc. w/ keys derived from HS+cl. KEM auth (MS)



KEMTLS
Benefits

• Size-optimized KEMTLS requires < ½ communication of size-optimized PQ 
signed-KEM


• Speed-optimized KEMTLS uses 90% fewer server CPU cycles and still 
reduces communication


• NTRU KEX (27 μs) 10x faster than Falcon signing (254 μs)


• No extra round trips required until client starts sending application data


• Smaller trusted code base (no signature generation on client/server)



TLS ecosystem challenges
So much going on…

• Datagram TLS

• Use of TLS handshake in other protocols 

• e.g. QUIC

• Application-specific behaviour

• e.g. HTTP3 SETTINGS frame not server authenticated

• PKI involving KEM public keys

• Long tail of implementations

• … 



KEMTLS
Standardizing?

• Authentication bits from KEMTLS have been submitted to the TLS working 
group at the Internet Engineering Task Force (IETF) (aka the RFC people)


• https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/


• https://wggrs.nl/docs/authkem-abridged/

https://datatracker.ietf.org/doc/draft-celi-wiggers-tls-authkem/
https://wggrs.nl/docs/authkem-abridged/


Transitioning to PQ
Wrap-up

• The transition to post-quantum means:


• KEMs are less flexible than Diffie—Hellman


• No non-interactive key exchange


• PQ is bigger than ECC we got used to


• Post-Quantum Signatures are big


• KEMTLS really explores new tradeoffs


• Signing and key exchange are not the same operations anymore


• Transitioning to PQ is an opportunity to reconsider some established protocols!

Thanks for your 
attention


