
Hacking in C
Assignment 4, Tuesday, May 19, 2020

Handing in your answers: Submission via Brightspace (http://brightspace.ru.nl)

Deadline: Tuesday, May 26, 12:30

1. Consider the following program

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

int main(int argc, char* argv[1]) {

char command[10];

char buffer[100];

strcpy(command, "/bin/ls");

if (argc < 2) {

fprintf(stderr, "Usage: %s <string>\n", argv[0]);

exit(1);

}

strcpy(buffer, argv[1]);

printf("* [INFO] The value of command is: \"%s\"\n", command);

system(command);

return 0;

}

(a) Download this program and its Makefile from https://rded.nl/hic/buffer.tar.gz. The Makefile
makes sure that you compile it with -fno-stack-protector.

(b) Give an input to this exact program that makes it run /bin/sh instead of /bin/ls. Write your
solution to a file called exercise1.

2. There are two variants of this homework exercise: the “normal” variant and the “hard” variant. Only
choose the hard variant if you want some extra challenge, otherwise pick the normal one. Download
either the program https://rded.nl/hic/pwd-normal (normal) or the program https://rded.nl/

hic/pwd-hard (hard). You may need to run chmod +x pwd-normal to mark the downloaded file as
executable.

(a) Use gdb to find out what the program does. Describe in detail (for example, equivalent C or pseudo-
code) what the main function of the program does; write your answer to a file called exercise2a.
It may be helpful to look at the following:

• The local variables

• The function names

• The external functions being called

You may also refer to the following resources:

• gdb quick reference https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

• Quick intro to GDB https://www.youtube.com/watch?v=xQ0ONbt-qPs

While you do not have the source code, using the disassemble command will print the assembly
code of the program. You can step through the program using si (step instruction) and ni (next
instruction). The normal version of the exercise is compiled with debugging symbols, so commands
like info locals will work. gdb will give you some information about the functions being called,
but you may want to look for comparisons and jumps to infer the control flow.

http://brightspace.ru.nl
https://rded.nl/hic/buffer.tar.gz
https://rded.nl/hic/pwd-normal
https://rded.nl/hic/pwd-hard
https://rded.nl/hic/pwd-hard
https://users.ece.utexas.edu/~adnan/gdb-refcard.pdf
https://www.youtube.com/watch?v=xQ0ONbt-qPs


(b) Find an input (password) that makes the program print “You’re root!”. Explain why this input
gives you “root access”. Write your answer (both the input and an explanation) to a file called
exercise2b.
Note: Choose the input such that the program does not crash after printing “You’re root!”.



3. Consider the following program. The developer of it left some debugging code in the assignment. It
should make your life easier.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

// colour code magic

#define RED "\033[0;31m"

#define GREEN "\033[0;32m"

#define NC "\033[0m"

int check_passphrase(char* passphrase) {

char buffer[100];

strcpy(buffer, passphrase);

if(strcmp(passphrase, "the magic words are squeamish ossifrage") == 0)

return 1;

return 0;

}

void launch_shell() {

printf(GREEN "Launching shell." NC "\n");

system("/bin/bash");

}

int main(int argc, char *argv[]) {

if (argc != 2) {

printf("Usage: %s <passphrase>\n", argv[0]);

exit(0);

}

printf("* [DEBUG] Your input: %s\n", argv[1]);

printf("* [DEBUG] The function launch_shell is at %p\n", launch_shell);

if (check_passphrase(argv[1])) {

launch_shell();

exit(0);

} else {

fprintf(

stderr,

RED "Wrong password. This incident will be reported. "

"https://xkcd.com/838/" NC "\n");

}

return 1;

}

(a) Obtain the program from https://rded.nl/hic/functions.tar.gz. Compile it using the included
Makefile, which sets the correct flags.

(b) You should figure out how to get the program to start the shell without supplying the correct
password. Using gdb may be helpful in making this exercise easier, but you can do it without. If
you use gdb, try to first figure out what information you will need. break and info frame should
be good starting points. Write your answer into a text file called exercise3.

Important: If you want to run your attack without gdb, you must disable address randomization, a
mechanism that makes these attacks harder. Run the command setarch $(uname -m) -R to start a
shell where address randomization is turned off. Without this, the launch shell function will be at a
different address every time!

https://rded.nl/hic/functions.tar.gz


4. Place the files

• exercise1

• exercise2a,

• exercise2b,

• exercise3

in a directory called hic-assignment4-STUDENTNUMBER1-STUDENTNUMBER2 (again, replace STUDENTNUMBER1
and STUDENTNUMBER2 by your respective student numbers). Make a tar.gz archive of the whole
hackingc-assignment4-STUDENTNUMBER1-STUDENTNUMBER2 directory and submit this archive in Brightspace.


